Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -34,13 +34,13 @@ pipe.load_lora_weights(custom_model, use_auth_token=True)
|
|
34 |
pipe.to("cuda")
|
35 |
#pipe.enable_model_cpu_offload()
|
36 |
|
37 |
-
def infer(image_in, prompt):
|
38 |
prompt = prompt
|
39 |
negative_prompt = ""
|
40 |
|
41 |
image = load_image(image_in)
|
42 |
|
43 |
-
controlnet_conditioning_scale = 0.25 # recommended for good generalization
|
44 |
|
45 |
image = np.array(image)
|
46 |
image = cv2.Canny(image, 100, 200)
|
@@ -52,8 +52,8 @@ def infer(image_in, prompt):
|
|
52 |
prompt,
|
53 |
negative_prompt=negative_prompt,
|
54 |
image=image,
|
55 |
-
|
56 |
-
guidance_scale =
|
57 |
num_inference_steps=50
|
58 |
).images
|
59 |
|
@@ -65,12 +65,14 @@ with gr.Blocks() as demo:
|
|
65 |
with gr.Column():
|
66 |
image_in = gr.Image(source="upload", type="filepath")
|
67 |
prompt = gr.Textbox(label="Prompt")
|
|
|
|
|
68 |
submit_btn = gr.Button("Submit")
|
69 |
result = gr.Image(label="Result")
|
70 |
|
71 |
submit_btn.click(
|
72 |
fn = infer,
|
73 |
-
inputs = [image_in, prompt],
|
74 |
outputs = [result]
|
75 |
)
|
76 |
|
|
|
34 |
pipe.to("cuda")
|
35 |
#pipe.enable_model_cpu_offload()
|
36 |
|
37 |
+
def infer(image_in, prompt, controlnet_conditioning_scale, guidance_scale):
|
38 |
prompt = prompt
|
39 |
negative_prompt = ""
|
40 |
|
41 |
image = load_image(image_in)
|
42 |
|
43 |
+
#controlnet_conditioning_scale = 0.25 # recommended for good generalization
|
44 |
|
45 |
image = np.array(image)
|
46 |
image = cv2.Canny(image, 100, 200)
|
|
|
52 |
prompt,
|
53 |
negative_prompt=negative_prompt,
|
54 |
image=image,
|
55 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
56 |
+
guidance_scale = guidance_scale,
|
57 |
num_inference_steps=50
|
58 |
).images
|
59 |
|
|
|
65 |
with gr.Column():
|
66 |
image_in = gr.Image(source="upload", type="filepath")
|
67 |
prompt = gr.Textbox(label="Prompt")
|
68 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0)
|
69 |
+
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.0, maximum=1.0, step=0.01, value=0.5)
|
70 |
submit_btn = gr.Button("Submit")
|
71 |
result = gr.Image(label="Result")
|
72 |
|
73 |
submit_btn.click(
|
74 |
fn = infer,
|
75 |
+
inputs = [image_in, prompt, controlnet_conditioning_scale, guidance_scale ],
|
76 |
outputs = [result]
|
77 |
)
|
78 |
|