File size: 2,019 Bytes
94ee4bb 150f210 88d0e15 94ee4bb 5f0cf71 5493baa 94ee4bb d02a25f 164ad79 94ee4bb b328128 164ad79 b328128 164ad79 d02a25f 5f0cf71 d02a25f 5f0cf71 5665597 94ee4bb 97126d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
#import torch
#from torch import autocast // only for GPU
from PIL import Image
import numpy as np
from io import BytesIO
import os
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionImg2ImgPipeline
print("hello sylvain")
YOUR_TOKEN=MY_SECRET_TOKEN
device="cpu"
prompt_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
prompt_pipe.to(device)
img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
img_pipe.to(device)
source_img = gr.Image(source="upload", type="filepath", label="init_img")
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
def resize(height,img):
baseheight = height
img = Image.open(img)
hpercent = (baseheight/float(img.size[1]))
wsize = int((float(img.size[0])*float(hpercent)))
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
return img
def infer(prompt, source_img):
if(source_img != None):
init_image = resize(512,source_img)
init_image.save('source.png')
images_list = img_pipe([prompt] * 2, init_image=init_image, strength=0.75)
else:
images_list = prompt_pipe([prompt] * 2)
images = []
safe_image = Image.open(r"unsafe.png")
for i, image in enumerate(images_list["sample"]):
if(images_list["nsfw_content_detected"][i]):
images.append(safe_image)
else:
images.append(image)
return images
print("Great sylvain ! Everything is working fine !")
title="Stable Diffusion CPU"
description="Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>"
gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True) |