fffiloni commited on
Commit
6a3bc6d
1 Parent(s): 8d578e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -4
app.py CHANGED
@@ -36,13 +36,16 @@ def resize(value,img):
36
  return img
37
 
38
 
39
- def infer(source_img, prompt):
40
-
 
41
  source_image = resize(512, source_img)
42
  source_image.save('source.png')
43
- images_list = img_pipe([prompt] * 2, init_image=source_image, strength=0.75)
 
44
  images = []
45
  safe_image = Image.open(r"unsafe.png")
 
46
  for i, image in enumerate(images_list["sample"]):
47
  if(images_list["nsfw_content_detected"][i]):
48
  images.append(safe_image)
@@ -55,4 +58,10 @@ print("Great sylvain ! Everything is working fine !")
55
  title="Img2Img Stable Diffusion CPU"
56
  description="Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>"
57
 
58
- gr.Interface(fn=infer, inputs=[source_img, "text"], outputs=gallery,title=title,description=description, allow_flagging="manual", flagging_dir="flagged").queue(max_size=100).launch(enable_queue=True)
 
 
 
 
 
 
 
36
  return img
37
 
38
 
39
+ def infer(source_img, prompt, guide, steps, seed, strength):
40
+ generator = torch.Generator('cpu').manual_seed(seed)
41
+
42
  source_image = resize(512, source_img)
43
  source_image.save('source.png')
44
+
45
+ images_list = img_pipe([prompt] * 2, init_image=source_image, strength=strength, guidance_scale=guide, num_inference_steps=steps)
46
  images = []
47
  safe_image = Image.open(r"unsafe.png")
48
+
49
  for i, image in enumerate(images_list["sample"]):
50
  if(images_list["nsfw_content_detected"][i]):
51
  images.append(safe_image)
 
58
  title="Img2Img Stable Diffusion CPU"
59
  description="Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>"
60
 
61
+ gr.Interface(fn=infer, inputs=[source_img,
62
+ "text",
63
+ gr.Slider(2, 15, value = 7, label = 'Guidence Scale'),
64
+ gr.Slider(10, 50, value = 25, step = 1, label = 'Number of Iterations'),
65
+ gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True),
66
+ gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .75)],
67
+ outputs=gallery,title=title,description=description, allow_flagging="manual", flagging_dir="flagged").queue(max_size=100).launch(enable_queue=True)