File size: 1,082 Bytes
13a751b 2136b2c 13a751b 649dc8d 13a751b aa9649d cf29b6f 281204b cf29b6f 281204b cf29b6f 49e4d1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
import numpy as np
import imageio
from PIL import Image
source_img = gr.Image(source="upload", type="numpy", tool="sketch", elem_id="source_container");
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="file",label="Mask")]
def resize(height,img):
baseheight = height
img = Image.open(img)
hpercent = (baseheight/float(img.size[1]))
wsize = int((float(img.size[0])*float(hpercent)))
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
return img
def predict(source_img):
#print(sketch)
#print(sketch.mode)
#sketch_png = resize(512,source_img)
#sketch_png.save('source.png')
#print(sketch_png)
imageio.imwrite("data.png", source_img["image"])
imageio.imwrite("data_mask.png", source_img["mask"])
src = resize(512, "data.png")
src.save("src.png")
mask = resize(512, "data_mask.png")
mask.save("mask.png")
return src, mask
custom_css="style.css"
gr.Interface(fn=predict, inputs=source_img, outputs=outputs, css=custom_css).launch(enable_queue=True) |