|
from diffusers import StableDiffusionInpaintPipeline |
|
import gradio as gr |
|
import numpy as np |
|
import imageio |
|
from PIL import Image |
|
from io import BytesIO |
|
import os |
|
|
|
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') |
|
|
|
|
|
print("hello sylvain") |
|
|
|
YOUR_TOKEN=MY_SECRET_TOKEN |
|
|
|
device="cpu" |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) |
|
pipe.to(device) |
|
|
|
source_img = gr.Image(source="upload", type="numpy", tool="sketch", elem_id="source_container"); |
|
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") |
|
|
|
def resize(height,img): |
|
baseheight = height |
|
img = Image.open(img) |
|
hpercent = (baseheight/float(img.size[1])) |
|
wsize = int((float(img.size[0])*float(hpercent))) |
|
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) |
|
return img |
|
|
|
def predict(prompt, source_img): |
|
imageio.imwrite("data.png", source_img["image"]) |
|
imageio.imwrite("data_mask.png", source_img["mask"]) |
|
|
|
src = resize(512, "data.png") |
|
src.save("src.png") |
|
mask = resize(512, "data_mask.png") |
|
mask.save("mask.png") |
|
|
|
images_list = pipe([prompt] * 2, init_image=src, mask_image=mask, strength=0.75) |
|
images = [] |
|
safe_image = Image.open(r"unsafe.png") |
|
for i, image in enumerate(images_list["sample"]): |
|
if(images_list["nsfw_content_detected"][i]): |
|
images.append(safe_image) |
|
else: |
|
images.append(image) |
|
return images |
|
|
|
custom_css="style.css" |
|
title="InPainting Stable Diffusion CPU" |
|
description="Inpainting Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b><br /><span style=\"color:'red';\">Please use 512*512 square image as input to avoid memory error </span>" |
|
gr.Interface(fn=predict, inputs=["text", source_img], outputs=gallery, css=custom_css, title=title, description=description).launch(enable_queue=True) |