import gradio as gr import numpy as np import imageio from PIL import Image source_img = gr.Image(source="upload", type="numpy", tool="sketch", elem_id="source_container"); outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="file",label="Mask")] def resize(height,img): baseheight = height img = Image.open(img) hpercent = (baseheight/float(img.size[1])) wsize = int((float(img.size[0])*float(hpercent))) img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) return img def predict(source_img): #print(sketch) #print(sketch.mode) #sketch_png = resize(512,source_img) #sketch_png.save('source.png') #print(sketch_png) imageio.imwrite("data.png", source_img["image"]) imageio.imwrite("data_mask.png", source_img["mask"]) src = resize(512, "data.png") src.save("src.png") mask = resize(512, "data_mask.png") mask.save("mask.png") return src, mask custom_css="style.css" gr.Interface(fn=predict, inputs=source_img, outputs=outputs, css=custom_css).launch(enable_queue=True)