File size: 19,325 Bytes
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import math
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn as nn
from einops import rearrange
from torch import Tensor
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint


def find_multiple(n: int, k: int) -> int:
    if n % k == 0:
        return n
    return n + k - (n % k)


@dataclass
class BaseModelArgs:
    vocab_size: int = 32000
    n_layer: int = 32
    n_head: int = 32
    dim: int = 4096
    intermediate_size: int = None
    n_local_heads: int = -1
    head_dim: int = 64
    rope_base: float = 10000
    norm_eps: float = 1e-5
    max_seq_len: int = 2048
    dropout: float = 0.0

    # Codebook configs
    codebook_size: int = 160
    num_codebooks: int = 4
    num_in_codebooks: Optional[int] = None
    codebook_padding_idx: int = 0

    # Gradient checkpointing
    use_gradient_checkpointing: bool = True

    def __post_init__(self):
        if self.n_local_heads == -1:
            self.n_local_heads = self.n_head
        if self.intermediate_size is None:
            hidden_dim = 4 * self.dim
            n_hidden = int(2 * hidden_dim / 3)
            self.intermediate_size = find_multiple(n_hidden, 256)
        if self.num_in_codebooks is None:
            self.num_in_codebooks = self.num_codebooks
        self.head_dim = self.dim // self.n_head


@dataclass
class NaiveModelArgs(BaseModelArgs):
    pass


@dataclass
class DualARModelArgs(BaseModelArgs):
    n_fast_layer: int = 4


class KVCache(nn.Module):
    def __init__(
        self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16
    ):
        super().__init__()
        cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim)
        self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
        self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))

    def update(self, input_pos, k_val, v_val):
        # input_pos: [S], k_val: [B, H, S, D]
        assert input_pos.shape[0] == k_val.shape[2]

        k_out = self.k_cache
        v_out = self.v_cache
        k_out[:, :, input_pos] = k_val
        v_out[:, :, input_pos] = v_val

        return k_out, v_out


@dataclass
class TransformerForwardResult:
    token_logits: Tensor
    codebook_logits: Tensor


@dataclass
class BaseTransformerForwardResult:
    logits: Tensor
    hidden_states: Tensor


class BaseTransformer(nn.Module):
    def __init__(self, config: BaseModelArgs) -> None:
        super().__init__()
        self.config = config

        # Slow transformer
        self.embeddings = nn.Embedding(
            config.vocab_size + config.codebook_size * config.num_in_codebooks,
            config.dim,
        )
        self.layers = nn.ModuleList(
            TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer)
        )
        self.norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.output = nn.Linear(
            config.dim,
            config.vocab_size,
            bias=False,
        )

        self.register_buffer(
            "freqs_cis",
            precompute_freqs_cis(
                config.max_seq_len,
                config.dim // config.n_head,
                config.rope_base,
            ),
            persistent=False,
        )
        self.register_buffer(
            "causal_mask",
            torch.tril(
                torch.ones(
                    config.max_seq_len,
                    config.max_seq_len,
                    dtype=torch.bool,
                )
            ),
            persistent=False,
        )

        # For kv cache
        self.max_batch_size = -1
        self.max_seq_len = -1

    def setup_caches(
        self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
    ):
        if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size:
            return

        head_dim = self.config.dim // self.config.n_head
        max_seq_len = find_multiple(max_seq_len, 8)
        self.max_seq_len = max_seq_len
        self.max_batch_size = max_batch_size

        for b in self.layers:
            b.attention.kv_cache = KVCache(
                max_batch_size,
                max_seq_len,
                self.config.n_local_heads,
                head_dim,
                dtype=dtype,
            )

    def embed(self, x: Tensor) -> Tensor:
        vocab_embeds = [self.embeddings(x[:, 0])]
        for i in range(self.config.num_in_codebooks):
            emb = self.embeddings(
                x[:, i + 1] + i * self.config.codebook_size + self.config.vocab_size
            )
            emb[x[:, i + 1] == self.config.codebook_padding_idx] = 0
            vocab_embeds.append(emb)

        x = torch.stack(vocab_embeds, dim=3)
        x = x.sum(dim=3)

        return x

    def forward(
        self, inp: Tensor, key_padding_mask: Optional[Tensor] = None
    ) -> BaseTransformerForwardResult:
        # x: (batch, num_codebooks + 1, seq_len)
        seq_len = inp.size(2)

        # Here we want to merge the embeddings of the codebooks
        x = self.embed(inp)

        mask = self.causal_mask[None, None, :seq_len, :seq_len]  # (B, N, Q, K)
        freqs_cis = self.freqs_cis[:seq_len]

        # Not that the causal mask here follows the definition of scaled_dot_product_attention
        # That is, FALSE means masked out
        # To maintain consistency, key_padding_mask use TRUE to mask out
        if key_padding_mask is not None:
            mask = mask & key_padding_mask[:, None, None, :].logical_not()

        for layer in self.layers:
            if self.config.use_gradient_checkpointing and self.training:
                x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True)
            else:
                x = layer(x, freqs_cis, mask)

        # We got slow_out here
        slow_out = self.norm(x)
        token_logits = self.output(slow_out)

        return BaseTransformerForwardResult(
            logits=token_logits,
            hidden_states=x,
        )

    def forward_generate(
        self, x: Tensor, input_pos: Optional[Tensor] = None
    ) -> BaseTransformerForwardResult:
        # This is used for generation, optimized for torch compile
        assert (
            self.max_seq_len != -1 and self.max_batch_size != -1
        ), "Please call setup_caches before forward_generate"

        x = self.embed(x)

        mask = self.causal_mask[
            None, None, input_pos, : self.max_seq_len
        ]  # (B, N, Q, K)
        freqs_cis = self.freqs_cis[input_pos]

        for layer in self.layers:
            x = layer(x, freqs_cis, mask, input_pos=input_pos)

        # If prefill, we only calculate the logits of last token
        if x.size(1) > 1:
            x = x[:, -1:]

        # We got slow_out here
        slow_out = self.norm(x)
        token_logits = self.output(slow_out)

        return BaseTransformerForwardResult(
            logits=token_logits,
            hidden_states=x,
        )


class NaiveTransformer(BaseTransformer):
    def __init__(self, config: NaiveModelArgs) -> None:
        super().__init__(config)

        self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.codebook_output = nn.Linear(
            config.dim,
            config.codebook_size * config.num_codebooks,
            bias=False,
        )

    def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult:
        token_logits = result.logits
        x = result.hidden_states

        # Codebook
        codebook_logits = self.codebook_output(self.codebook_norm(x))
        codebook_logits = rearrange(
            codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks
        )

        return TransformerForwardResult(
            token_logits=token_logits,
            codebook_logits=codebook_logits,
        )

    def forward(
        self, inp: Tensor, key_padding_mask: Optional[Tensor] = None
    ) -> TransformerForwardResult:
        result = super().forward(inp, key_padding_mask)
        return self.decode(result)

    def forward_generate(
        self, x: Tensor, input_pos: Optional[Tensor] = None
    ) -> TransformerForwardResult:
        result = super().forward_generate(x, input_pos)
        return self.decode(result)


class DualARTransformer(BaseTransformer):
    def __init__(self, config: DualARModelArgs) -> None:
        super().__init__(config)

        # Fast transformer
        self.fast_embeddings = nn.Embedding(
            config.codebook_size, config.dim, padding_idx=config.codebook_padding_idx
        )

        # The equivalent bs is so large that sdpa doesn't work
        self.fast_layers = nn.ModuleList(
            TransformerBlock(config, use_sdpa=False) for _ in range(config.n_fast_layer)
        )
        self.fast_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.fast_output = nn.Linear(
            config.dim,
            config.codebook_size,
            bias=False,
        )

    def setup_caches(
        self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
    ):
        super().setup_caches(max_batch_size, max_seq_len, dtype)

        head_dim = self.config.dim // self.config.n_head

        # Fast transformer
        # The max seq len here is the number of codebooks
        for b in self.fast_layers:
            b.attention.kv_cache = KVCache(
                max_batch_size,
                self.config.num_codebooks,
                self.config.n_local_heads,
                head_dim,
                dtype=dtype,
            )

    def forward(
        self, inp: Tensor, key_padding_mask: Optional[Tensor] = None
    ) -> TransformerForwardResult:
        parent_result = super().forward(inp, key_padding_mask)
        token_logits = parent_result.logits
        x = parent_result.hidden_states

        # Fast transformer
        fast_seq_len = self.config.num_codebooks
        fast_mask = self.causal_mask[
            None, None, :fast_seq_len, :fast_seq_len
        ]  # (B, N, Q, K)
        fast_freqs_cis = self.freqs_cis[:fast_seq_len]

        # Drop the last token and rotate left
        codebooks = inp[:, 1:-1, 1:]
        codebooks = F.pad(codebooks, (0, 1), value=self.config.codebook_padding_idx)
        codebook_embeddings = self.fast_embeddings(codebooks)
        x = torch.cat([x[:, None], codebook_embeddings], dim=1)
        b, s = x.size(0), x.size(2)
        x = rearrange(x, "b n s d -> (b s) n d")  # flatten the batch and seq_len

        # Remove padded part
        codebooks = rearrange(codebooks, "b n s -> (b s) n")
        codebook_mask = (codebooks == self.config.codebook_padding_idx).all(dim=-1)
        x_bs, x_len = x.size(0), x.size(1)
        x = x[~codebook_mask]

        for layer in self.fast_layers:
            if self.config.use_gradient_checkpointing and self.training:
                x = checkpoint(layer, x, fast_freqs_cis, fast_mask, use_reentrant=True)
            else:
                x = layer(x, fast_freqs_cis, fast_mask)

        # unflatten the batch and num_codebooks
        fast_out = self.fast_norm(x)
        codebook_logits = self.fast_output(fast_out)

        # Re-pad the codebook_logits
        buffer = torch.zeros(
            x_bs,
            x_len,
            codebook_logits.size(-1),
            device=codebook_logits.device,
            dtype=codebook_logits.dtype,
        )
        buffer[~codebook_mask] = codebook_logits
        codebook_logits = buffer

        assert codebook_logits.shape[1] == self.config.num_codebooks
        codebook_logits = rearrange(
            codebook_logits,
            "(b s) n d -> b s n d",
            b=b,
            s=s,
            n=self.config.num_codebooks,
        )

        return TransformerForwardResult(
            token_logits=token_logits,
            codebook_logits=codebook_logits,
        )

    def forward_generate_fast(
        self, x: Tensor, input_pos: Optional[Tensor] = None
    ) -> Tensor:
        # Fast transformer
        x = x.view(1, 1, -1)

        fast_mask = self.causal_mask[
            None, None, input_pos, : self.config.num_codebooks
        ]  # (B, N, Q, K)
        fast_freqs_cis = self.freqs_cis[input_pos]

        for layer in self.fast_layers:
            x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos)

        # unflatten the batch and num_codebooks
        fast_out = self.fast_norm(x)  # only take the last token
        codebook_logits = self.fast_output(fast_out)

        return codebook_logits


class TransformerBlock(nn.Module):
    def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None:
        super().__init__()
        self.attention = Attention(config, use_sdpa=use_sdpa)
        self.feed_forward = FeedForward(config)
        self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
        self.attention_norm = RMSNorm(config.dim, config.norm_eps)

    def forward(
        self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None
    ) -> Tensor:
        h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
        out = h + self.feed_forward(self.ffn_norm(h))
        return out


class Attention(nn.Module):
    def __init__(self, config: BaseModelArgs, use_sdpa: bool = True):
        super().__init__()
        assert config.dim % config.n_head == 0

        total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
        # key, query, value projections for all heads, but in a batch
        self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
        self.wo = nn.Linear(config.dim, config.dim, bias=False)
        self.kv_cache = None

        self.dropout = config.dropout
        self.n_head = config.n_head
        self.head_dim = config.head_dim
        self.n_local_heads = config.n_local_heads
        self.dim = config.dim
        self.use_sdpa = use_sdpa
        self._register_load_state_dict_pre_hook(self.load_hook)

    def load_hook(self, state_dict, prefix, *args):
        if prefix + "wq.weight" in state_dict:
            wq = state_dict.pop(prefix + "wq.weight")
            wk = state_dict.pop(prefix + "wk.weight")
            wv = state_dict.pop(prefix + "wv.weight")
            state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        mask: Tensor,
        input_pos: Optional[Tensor] = None,
    ) -> Tensor:
        bsz, seqlen, _ = x.shape

        kv_size = self.n_local_heads * self.head_dim
        q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)

        q = q.view(bsz, seqlen, self.n_head, self.head_dim)
        k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)

        q = apply_rotary_emb(q, freqs_cis)
        k = apply_rotary_emb(k, freqs_cis)

        q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))

        if self.kv_cache is not None:
            k, v = self.kv_cache.update(input_pos, k, v)

        k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)

        if self.use_sdpa:
            y = F.scaled_dot_product_attention(
                q,
                k,
                v,
                attn_mask=mask,
                dropout_p=self.dropout if self.training else 0.0,
            )
        else:
            y = self.eq_scaled_dot_product_attention(
                q,
                k,
                v,
                attn_mask=mask,
                dropout_p=self.dropout if self.training else 0.0,
            )

        y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)

        return self.wo(y)

    def eq_scaled_dot_product_attention(
        self,
        query,
        key,
        value,
        attn_mask=None,
        dropout_p=0.0,
    ) -> torch.Tensor:
        # This is a standard scaled dot product attention
        # It's low efficient, but it doesn't raise cuda error

        L, S = query.size(-2), key.size(-2)
        scale_factor = 1 / math.sqrt(query.size(-1))
        attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
            else:
                attn_bias += attn_mask

        attn_weight = query @ key.transpose(-2, -1) * scale_factor
        attn_weight += attn_bias
        attn_weight = torch.softmax(attn_weight, dim=-1)
        attn_weight = torch.dropout(attn_weight, dropout_p, train=True)

        return attn_weight @ value


class FeedForward(nn.Module):
    def __init__(self, config: BaseModelArgs) -> None:
        super().__init__()
        self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x: Tensor) -> Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
    freqs = 1.0 / (
        base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
    )
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
    return cache.to(dtype=torch.bfloat16)


def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
    freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
            xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
        ],
        -1,
    )

    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)


if __name__ == "__main__":
    args = DualARModelArgs(
        max_seq_len=4096,
        vocab_size=32312,
        n_layer=12,
        n_fast_layer=4,
        n_head=12,
        dim=768,
        rope_base=10000,
        norm_eps=1e-5,
        codebook_size=128,
        num_codebooks=4,
    )

    model = DualARTransformer(args)
    model = model.cuda().bfloat16()
    print("Total params:", sum(i.numel() for i in model.parameters()) / 1024 / 1024)

    inputs = torch.randint(0, 100, (2, 5, 128)).cuda()
    key_padding_mask = torch.zeros(2, 128).bool().cuda()
    key_padding_mask[0, 2:] = True
    x1 = model(inputs, key_padding_mask=key_padding_mask)
    print(x1.token_logits.shape)
    print(x1.codebook_logits.shape)