File size: 4,000 Bytes
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from dataclasses import dataclass

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from vector_quantize_pytorch import GroupedResidualFSQ

from .firefly import ConvNeXtBlock


@dataclass
class FSQResult:
    z: torch.Tensor
    codes: torch.Tensor
    latents: torch.Tensor


class DownsampleFiniteScalarQuantize(nn.Module):
    def __init__(
        self,
        input_dim: int = 512,
        n_codebooks: int = 9,
        n_groups: int = 1,
        levels: tuple[int] = (8, 5, 5, 5),  # Approximate 2**10
        downsample_factor: tuple[int] = (2, 2),
        downsample_dims: tuple[int] | None = None,
    ):
        super().__init__()

        if downsample_dims is None:
            downsample_dims = [input_dim for _ in range(len(downsample_factor))]

        all_dims = (input_dim,) + tuple(downsample_dims)

        self.residual_fsq = GroupedResidualFSQ(
            dim=all_dims[-1],
            levels=levels,
            num_quantizers=n_codebooks,
            groups=n_groups,
        )

        self.downsample_factor = downsample_factor
        self.downsample_dims = downsample_dims

        self.downsample = nn.Sequential(
            *[
                nn.Sequential(
                    nn.Conv1d(
                        all_dims[idx],
                        all_dims[idx + 1],
                        kernel_size=factor,
                        stride=factor,
                    ),
                    ConvNeXtBlock(dim=all_dims[idx + 1]),
                )
                for idx, factor in enumerate(downsample_factor)
            ]
        )

        self.upsample = nn.Sequential(
            *[
                nn.Sequential(
                    nn.ConvTranspose1d(
                        all_dims[idx + 1],
                        all_dims[idx],
                        kernel_size=factor,
                        stride=factor,
                    ),
                    ConvNeXtBlock(dim=all_dims[idx]),
                )
                for idx, factor in reversed(list(enumerate(downsample_factor)))
            ]
        )

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv1d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, z) -> FSQResult:
        original_shape = z.shape
        z = self.downsample(z)
        quantized, indices = self.residual_fsq(z.mT)
        result = FSQResult(
            z=quantized.mT,
            codes=indices.mT,
            latents=z,
        )
        result.z = self.upsample(result.z)

        # Pad or crop z to match original shape
        diff = original_shape[-1] - result.z.shape[-1]
        left = diff // 2
        right = diff - left

        if diff > 0:
            result.z = F.pad(result.z, (left, right))
        elif diff < 0:
            result.z = result.z[..., left:-right]

        return result

    def encode(self, z):
        z = self.downsample(z)
        _, indices = self.residual_fsq(z.mT)
        indices = rearrange(indices, "g b l r -> b (g r) l")
        return indices

    def decode(self, indices: torch.Tensor):
        indices = rearrange(indices, "b (g r) l -> g b l r", g=self.residual_fsq.groups)
        z_q = self.residual_fsq.get_output_from_indices(indices)
        z_q = self.upsample(z_q.mT)
        return z_q

    # def from_latents(self, latents: torch.Tensor):
    #     z_q, z_p, codes = super().from_latents(latents)
    #     z_q = self.upsample(z_q)
    #     return z_q, z_p, codes


if __name__ == "__main__":
    rvq = DownsampleFiniteScalarQuantize(
        n_codebooks=1,
        downsample_factor=(2, 2),
    )
    x = torch.randn(16, 512, 80)

    result = rvq(x)
    print(rvq)
    print(result.latents.shape, result.codes.shape, result.z.shape)

    # y = rvq.from_codes(result.codes)
    # print(y[0].shape)

    # y = rvq.from_latents(result.latents)
    # print(y[0].shape)