lengyue233's picture
Init hf space integration
0a3525d verified
raw
history blame
22.6 kB
import random
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
from random import Random
from typing import Optional, Union
import grpc
import numpy as np
import pyarrow.parquet as pq
import torch
import torch.nn.functional as F
from datasets.download.streaming_download_manager import xopen
from huggingface_hub import HfApi
from lightning import LightningDataModule
from torch.distributed import get_rank, get_world_size, is_initialized
from torch.utils.data import DataLoader, IterableDataset, get_worker_info
from transformers import AutoTokenizer
from fish_speech.datasets.protos.text_data_pb2 import SampledData
from fish_speech.datasets.protos.text_data_stream import read_pb_stream
from fish_speech.text.clean import clean_text
from fish_speech.utils import RankedLogger
from fish_speech.utils.braceexpand import braceexpand
log = RankedLogger(__name__, rank_zero_only=True)
CODEBOOK_PAD_TOKEN_ID = 0
CODEBOOK_EOS_TOKEN_ID = 1
def split_by_rank_worker(files):
# We need to know the total number of devices
# to split the data properly
total_devices = 1
if is_initialized():
total_devices = get_world_size()
worker_info = get_worker_info()
if worker_info is not None:
total_devices *= worker_info.num_workers
if len(files) < total_devices:
# Repeat the files N times to match the number of devices
files = files * (total_devices // len(files) + 1)
# DDP
if is_initialized():
files = files[get_rank() :: get_world_size()]
# Split by worker
if worker_info is not None:
files = files[worker_info.id :: worker_info.num_workers]
return files
class StreamTextDataset(IterableDataset):
def __init__(
self,
files: Optional[Union[list[str], str]] = None,
prefix: Optional[str] = None,
seed: int = 42,
parquet_batch_size: int = 10000,
repo: str = "uonlp/CulturaX",
max_length: int = 1024,
tokenizer: AutoTokenizer = None,
):
super().__init__()
self.seed = seed
self.parquet_batch_size = parquet_batch_size
self.repo = repo
self.max_length = max_length
self.tokenizer = tokenizer
if files is None and prefix is None:
raise ValueError("Either files or prefix must be specified")
if prefix is not None:
files = HfApi().list_repo_files(repo, repo_type="dataset")
files = [
f for f in files if f.startswith(prefix) and f.endswith(".parquet")
]
log.info(f"Found {len(files)} files in {repo} with prefix {prefix}")
else:
if isinstance(files, str):
files = [files]
files = list(chain.from_iterable(map(braceexpand, files)))
log.info(f"Expanded {len(files)} files in {repo}")
# Get sharded files
self.files = sorted(files)
Random(seed).shuffle(self.files)
def __iter__(self):
files = split_by_rank_worker(self.files)
random.shuffle(files)
for filename in files:
try:
yield from self.parse_data(filename)
except Exception as e:
log.exception(f"Failed to parse {filename}: {e}")
def parse_data(self, filename: str):
for data in self.parse_data_internal(filename):
text = data["text"]
# encode
tokens = self.tokenizer.encode(
text,
add_special_tokens=False,
truncation=False,
max_length=10**6,
)
# Random choice self.max_length
if len(tokens) > self.max_length:
start = random.randint(0, len(tokens) - self.max_length)
tokens = tokens[start : start + self.max_length - 1]
tokens = (
[self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]
)
# Pad dims
placeholder_multi_codebook = torch.zeros((4, len(tokens)), dtype=torch.long)
tokens = torch.concat(
[
torch.tensor([tokens], dtype=torch.long),
placeholder_multi_codebook,
],
dim=0,
)
labels = tokens.clone()
tokens = tokens[:, :-1]
labels = labels[:, 1:]
labels[1:] = -100 # remove all placeholders
yield {"tokens": tokens, "labels": labels}
def parse_data_internal(self, filename: str):
url = f"https://huggingface.co/datasets/{self.repo}/resolve/main/{filename}"
with xopen(url, mode="rb") as stream:
parquet_file = pq.ParquetFile(stream)
for batch in parquet_file.iter_batches(
batch_size=self.parquet_batch_size, columns=["text"]
):
# In-batch shuffling
texts = [{"text": text.as_py()} for text in batch["text"]]
random.shuffle(texts)
yield from texts
class AutoAugTextDataset(IterableDataset):
"""
Auto Augment Dataset by Speaker
1. Random concatenate multiple sentences from the same speaker to form a longer sentence
2. Automatically normalize the text
For interactive mode, we use the following format (multiple sequences):
<s> [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] </s>
For non-interactive mode, we use the following format (one long sequence):
<s> [INST] text [/INST] ... </s>
"""
def __init__(
self,
proto_files: list[str],
seed: int = 42,
interactive_prob: float = 0.5,
max_length: int = 1024,
tokenizer: AutoTokenizer = None,
use_speaker: bool = True,
causual: bool = True,
use_negative_samples: bool = False,
num_codebooks: Optional[int] = None,
):
"""
Args:
proto_files: proto buf files if using local data
seed: random seed
interactive_prob: probability to use interactive mode
max_length: max length of the text
tokenizer: tokenizer
use_speaker: include speaker information in the prompt
causual: use causual sampling when using local data, disable will lead to random sampling
use_negative_samples: generate negative samples
num_codebooks: number of codebooks, if None, it will be automatically detected
"""
super().__init__()
assert 0 <= interactive_prob <= 1, "interactive_prob must be in [0, 1]"
self.seed = seed
self.max_length = max_length
self.tokenizer = tokenizer
self.interactive_prob = interactive_prob
self.use_speaker = use_speaker
self.proto_files = proto_files
self.causual = causual
self.use_negative_samples = use_negative_samples
self.num_codebooks = num_codebooks
self.semantic_token_id = self.tokenizer.convert_tokens_to_ids("<|semantic|>")
self.groups = None
def init_mock_data_server(self):
if self.groups is not None:
return
# Expand the proto files
expanded_proto_files = []
for filename in self.proto_files:
for i in braceexpand(filename):
i = Path(i)
if i.is_file():
expanded_proto_files.append(i)
elif i.is_dir():
expanded_proto_files.extend(i.rglob("*.proto"))
expanded_proto_files.extend(i.rglob("*.protos"))
else:
raise ValueError(f"{i} is not a file or directory")
expanded_proto_files = sorted(expanded_proto_files)
Random(self.seed).shuffle(expanded_proto_files)
self.groups = []
shard_proto_files = split_by_rank_worker(expanded_proto_files)
log.info(
f"Reading {len(shard_proto_files)} / {len(expanded_proto_files)} files"
)
count = 0
for filename in shard_proto_files:
with open(filename, "rb") as f:
for text_data in read_pb_stream(f):
self.groups.append(text_data)
count += 1
log.info(f"Read total {count} groups of data")
# Shuffle the lines
Random(self.seed).shuffle(self.groups)
self.group_weights = [len(i.sentences) for i in self.groups]
def __iter__(self):
while True:
yield self.augment()
def tokenize_sentence(self, sentence: str):
sentence = clean_text(sentence)
tokens = self.tokenizer.encode(
f"{sentence}",
max_length=10**6,
add_special_tokens=False,
truncation=False,
)
return sentence, len(tokens)
def sample_data(self):
if self.groups is None:
self.init_mock_data_server()
# Shuffle unique lines, estimate that each sample is at least 20 tokens
num_samples = self.max_length // 20
# choice group based on their number of samples
group = random.choices(self.groups, weights=self.group_weights, k=1)[0]
if self.causual:
# Sample in order
if num_samples >= len(group.sentences):
samples = group.sentences
else:
begin = random.randint(0, len(group.sentences) - num_samples)
samples = group.sentences[begin : begin + num_samples]
else:
samples = random.choices(
group.sentences, k=min(num_samples, len(group.sentences))
)
return SampledData(
source=group.source,
name=group.name,
samples=samples,
)
def augment(self):
# Random sample based on speaker using a truncated normal distribution
a = torch.tensor([0], dtype=torch.float32)
torch.nn.init.trunc_normal_(
a,
mean=self.max_length // 2,
std=self.max_length // 4,
a=10,
b=self.max_length,
)
remaining_tokens = a.long().item() - 4
final_text, final_semantic = [], []
response = self.sample_data()
if len(response.samples) == 0:
# Invalid group
return None
samples = list(response.samples)
idx = 0
use_interactive = random.random() < self.interactive_prob
all_tokens, all_labels = [], []
while remaining_tokens > 0 and len(samples) > 0:
sentence = samples.pop(0)
text = random.choice(sentence.texts)
text, length = self.tokenize_sentence(text)
remaining_tokens -= length + len(sentence.semantics[0].values)
if use_interactive is False:
final_text.append(text)
final_semantic.append(sentence.semantics)
else:
# For interactive mode, we only apply speaker for the first sentence
# [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST]
tokens, labels = self.pack_sentences(
sentences=[text],
semantics=[sentence.semantics],
speaker=response.name if (self.use_speaker and idx == 0) else None,
add_bos=idx == 0,
)
all_tokens.append(tokens)
all_labels.append(labels)
idx += 1
if use_interactive is False:
tokens, labels = self.pack_sentences(
final_text,
semantics=final_semantic,
speaker=response.name if self.use_speaker else None,
add_bos=True,
)
all_tokens.append(tokens)
all_labels.append(labels)
tokens = torch.cat(all_tokens, dim=1)
labels = torch.cat(all_labels, dim=1)
# Verify that the length is correct
assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}"
# Verify bos token
assert tokens[0, 0] == self.tokenizer.bos_token_id
data = {"tokens": tokens, "labels": labels}
if self.use_negative_samples:
negative_samples = self.generate_negative_samples(all_tokens, all_labels)
data.update(negative_samples)
return data
def generate_negative_samples(self, all_tokens, all_labels):
new_tokens, new_labels = [], []
for tokens, labels in zip(all_tokens, all_labels):
# If all codebooks are not -100, we find where it starts
start = torch.where(labels[1:].sum(0) != -100 * (labels.size(0) - 1))[0][0]
assert (labels[1:, start:] != -100).all() # This shouldn't happen
mode = random.choice(["repeat", "lost", "noise"])
begin = random.randint(start, labels.size(1) - 1)
end = random.randint(begin, labels.size(1) - 1)
if mode == "repeat":
tokens = torch.cat(
[
tokens[:, :begin],
tokens[:, begin:end],
tokens[:, begin:end],
tokens[:, end:],
],
dim=1,
)
labels = torch.cat(
[
labels[:, :begin],
labels[:, begin:end],
labels[:, begin:end],
labels[:, end:],
],
dim=1,
)
elif mode == "lost":
tokens = torch.cat([tokens[:, :begin], tokens[:, end:]], dim=1)
labels = torch.cat([labels[:, :begin], labels[:, end:]], dim=1)
elif mode == "noise":
middle_tokens, middle_labels = (
tokens[:, begin:end],
labels[:, begin:end],
)
random_order0 = torch.randperm(middle_tokens.size(1))
random_order1 = torch.randperm(middle_tokens.size(1))
middle_tokens = middle_tokens[:, random_order0]
middle_labels = middle_labels[:, random_order1]
tokens = torch.cat(
[tokens[:, :begin], middle_tokens, tokens[:, end:]], dim=1
)
labels = torch.cat(
[labels[:, :begin], middle_labels, labels[:, end:]], dim=1
)
new_tokens.append(tokens)
new_labels.append(labels)
tokens = torch.cat(new_tokens, dim=1)
labels = torch.cat(new_labels, dim=1)
# Verify that the length is correct
assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}"
return {"negative_tokens": tokens, "negative_labels": labels}
def pack_sentences(
self,
sentences: list[str],
semantics=list,
speaker: Optional[str] = None,
add_bos: bool = True,
):
if speaker is not None:
sentences = [f"[SPK: {speaker}]"] + sentences
final_text = "<|im_start|>user<|im_sep|>" + " ".join(sentences) + "<|im_end|>"
final_text = final_text + "<|im_start|>assistant<|im_sep|>"
encoded = self.tokenizer.encode(
final_text,
add_special_tokens=False,
truncation=False,
max_length=10**6,
)
semantic_length = sum([len(i[0].values) for i in semantics])
prompt_length = len(encoded)
num_codebooks = (
len(semantics[0]) if self.num_codebooks is None else self.num_codebooks
)
bos_bias = 1 if add_bos else 0
# Pack the tokens and semantics (add <s> and </s> to semantic tokens)
tokens = (
encoded
+ [self.semantic_token_id] * semantic_length
+ self.tokenizer.convert_tokens_to_ids(
["<|im_end|>", "<|end_of_sequence|>"]
)
)
if add_bos:
tokens = [self.tokenizer.bos_token_id] + tokens
# Codebook bos/padding: 0, eos: 1
codes = [
[CODEBOOK_PAD_TOKEN_ID] * (prompt_length + bos_bias)
for _ in range(num_codebooks)
]
for segment in semantics:
for book_idx, book in zip(range(num_codebooks), segment):
for j in book.values:
codes[book_idx].append(int(j) + 2)
for book in codes:
book.extend([CODEBOOK_EOS_TOKEN_ID] * 2)
tokens = [tokens] + codes
tokens = torch.tensor(tokens, dtype=torch.long)
labels = tokens.clone()
# Mask out the <s> tokens for semantic, predict semantic tokens only
# Since we don't mask out the input tokens, the language modeling still works
labels[1:, : (prompt_length + bos_bias)] = -100
tokens = tokens[:, :-1]
labels = labels[:, 1:]
# Verify the padding is correct, and the last token is eos
assert add_bos is False or tokens[0, 0] == self.tokenizer.bos_token_id
assert (tokens[1:, : prompt_length + bos_bias] == CODEBOOK_PAD_TOKEN_ID).all()
assert labels[0, -1] == self.tokenizer.eos_token_id
assert (labels[1:, -2:] == CODEBOOK_EOS_TOKEN_ID).all()
return tokens, labels
@dataclass
class TextDataCollator:
tokenizer: AutoTokenizer
max_length: int = 1024
def __call__(self, examples):
if "negative_tokens" in examples:
positive_examples = []
negative_examples = []
for i in examples:
positive_examples.append(
{
"tokens": i["tokens"],
"labels": i["labels"],
}
)
negative_examples.append(
{
"tokens": i["negative_tokens"],
"labels": i["negative_labels"],
}
)
examples = positive_examples + negative_examples
return self.batchify(examples)
def batchify(self, examples, tokens_key="tokens", labels_key="labels"):
tokens, attention_masks, labels = [], [], []
# Calculate the max length
max_tokens_length = 0
for example in examples:
max_tokens_length = max(max_tokens_length, example[tokens_key].size(1))
max_tokens_length = min(max_tokens_length, self.max_length)
for example in examples:
_tokens = example[tokens_key][:, :max_tokens_length]
_labels = example[labels_key][:, :max_tokens_length]
_attention_mask = torch.ones((max_tokens_length,), dtype=torch.bool)
tokens_length = _tokens.size(1)
_attention_mask[:tokens_length] = False
assert tokens_length == _labels.size(
1
), f"{tokens_length} != {_labels.size(1)}"
if tokens_length < max_tokens_length:
_tokens = F.pad(
_tokens,
(0, max_tokens_length - tokens_length),
value=self.tokenizer.eos_token_id,
)
_tokens[1:, tokens_length:] = CODEBOOK_PAD_TOKEN_ID
_labels = F.pad(
_labels, (0, max_tokens_length - _labels.size(1)), value=-100
)
tokens.append(_tokens)
attention_masks.append(_attention_mask)
labels.append(_labels)
tokens = torch.stack(tokens, dim=0)
attention_masks = torch.stack(attention_masks, dim=0)
labels = torch.stack(labels, dim=0)
return {
"inputs": tokens,
"attention_masks": attention_masks,
"labels": labels,
}
class InterleaveDataset(IterableDataset):
def __init__(
self,
datasets: list[IterableDataset],
probabilities: list[float],
seed: int = 42,
):
super().__init__()
self.datasets = datasets
self.probabilities = probabilities
self.seed = seed
def __iter__(self):
rng = np.random.default_rng(self.seed)
dataset_iterators = [iter(dataset) for dataset in self.datasets]
while True:
# Random choice one
dataset_idx = rng.choice(len(self.datasets), p=self.probabilities)
dataset_iterator = dataset_iterators[dataset_idx]
try:
yield next(dataset_iterator)
except StopIteration:
# Exhausted, create a new iterator
dataset_iterators[dataset_idx] = iter(self.datasets[dataset_idx])
yield next(dataset_iterators[dataset_idx])
class TextDataModule(LightningDataModule):
def __init__(
self,
train_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset],
val_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset],
batch_size: int = 32,
tokenizer: AutoTokenizer = None,
max_length: int = 1024,
num_workers: int = 4,
):
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.batch_size = batch_size
self.tokenizer = tokenizer
self.max_length = max_length
self.num_workers = num_workers
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
collate_fn=TextDataCollator(self.tokenizer, self.max_length),
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
collate_fn=TextDataCollator(self.tokenizer, self.max_length),
num_workers=self.num_workers,
)
if __name__ == "__main__":
from tqdm import tqdm
ds = AutoAugTextDataset(
["data/protos"],
tokenizer=AutoTokenizer.from_pretrained("fishaudio/fish-speech-1"),
use_speaker=False,
interactive_prob=1.0,
use_negative_samples=False,
)
for i in ds:
print(ds.tokenizer.decode(i["tokens"][0], skip_special_tokens=False))
# i["labels"][0][i["labels"][0] == -100] = 0
# print(ds.tokenizer.decode(i["labels"][0], skip_special_tokens=False))
break