Spaces:
Running
on
A10G
Running
on
A10G
from dataclasses import dataclass | |
from typing import Any, Optional | |
import lightning as L | |
import loralib as lora | |
import torch | |
import torch.nn.functional as F | |
from lightning.pytorch.utilities.types import OptimizerLRScheduler | |
import fish_speech.utils as utils | |
from fish_speech.models.text2semantic.llama import NaiveTransformer | |
log = utils.RankedLogger(__name__, rank_zero_only=True) | |
class LoraConfig: | |
r: int | |
lora_alpha: float | |
lora_dropout: float = 0.0 | |
class TextToSemantic(L.LightningModule): | |
def __init__( | |
self, | |
model: NaiveTransformer, | |
optimizer: Any, | |
lr_scheduler: Any, | |
lora_config: Optional[LoraConfig] = None, | |
save_lora_only: bool = False, | |
use_dpo: bool = False, | |
dpo_beta: float = 0.2, | |
): | |
super().__init__() | |
self.model = model | |
self.optimizer_builder = optimizer | |
self.lr_scheduler_builder = lr_scheduler | |
self.lora_config = lora_config | |
self.save_lora_only = save_lora_only | |
self.use_dpo = use_dpo # We don't support reference model yet | |
self.dpo_beta = dpo_beta | |
if self.lora_config is not None: | |
self.setup_lora() | |
def setup_lora(self): | |
# Replace the embedding layer with a LoRA layer | |
self.model.embeddings = lora.Embedding( | |
num_embeddings=self.model.embeddings.num_embeddings, | |
embedding_dim=self.model.embeddings.embedding_dim, | |
padding_idx=self.model.embeddings.padding_idx, | |
r=self.lora_config.r, | |
lora_alpha=self.lora_config.lora_alpha, | |
) | |
# Replace output layer with a LoRA layer | |
linears = [(self.model, "output")] | |
# Replace all linear layers with LoRA layers | |
for layer in self.model.layers: | |
linears.extend([(layer.attention, "wqkv"), (layer.attention, "wo")]) | |
linears.extend( | |
[ | |
(layer.feed_forward, "w1"), | |
(layer.feed_forward, "w2"), | |
(layer.feed_forward, "w3"), | |
] | |
) | |
if hasattr(self.model, "fast_layers"): | |
# Dual-AR model | |
linears.extend([(self.model, "fast_output")]) | |
for layer in self.model.fast_layers: | |
linears.extend([(layer.attention, "wqkv"), (layer.attention, "wo")]) | |
linears.extend( | |
[ | |
(layer.feed_forward, "w1"), | |
(layer.feed_forward, "w2"), | |
(layer.feed_forward, "w3"), | |
] | |
) | |
for module, layer in linears: | |
updated_linear = lora.Linear( | |
in_features=getattr(module, layer).in_features, | |
out_features=getattr(module, layer).out_features, | |
bias=getattr(module, layer).bias, | |
r=self.lora_config.r, | |
lora_alpha=self.lora_config.lora_alpha, | |
lora_dropout=self.lora_config.lora_dropout, | |
) | |
setattr(module, layer, updated_linear) | |
# Mark only the LoRA layers as trainable | |
lora.mark_only_lora_as_trainable(self.model, bias="lora_only") | |
def forward(self, x): | |
return self.model(x) | |
def on_save_checkpoint(self, checkpoint): | |
if self.lora_config is None or self.save_lora_only is False: | |
return | |
# Save only LoRA parameters | |
state_dict = checkpoint["state_dict"] | |
for name in list(state_dict.keys()): | |
if "lora" not in name: | |
state_dict.pop(name) | |
def configure_optimizers(self) -> OptimizerLRScheduler: | |
# Get weight decay parameters | |
weight_decay_parameters, other_parameters = [], [] | |
for name, param in self.named_parameters(): | |
if ".bias" in name or "norm.weight" in name or ".embeddings." in name: | |
other_parameters.append(param) | |
else: | |
weight_decay_parameters.append(param) | |
optimizer = self.optimizer_builder( | |
[ | |
{"params": weight_decay_parameters}, | |
{"params": other_parameters, "weight_decay": 0.0}, | |
] | |
) | |
# Print the parameters and their weight decay | |
for i in optimizer.param_groups: | |
log.info( | |
f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters" | |
) | |
lr_scheduler = self.lr_scheduler_builder(optimizer) | |
return { | |
"optimizer": optimizer, | |
"lr_scheduler": { | |
"scheduler": lr_scheduler, | |
"interval": "step", | |
}, | |
} | |
# Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90 | |
def get_batch_logps( | |
self, | |
logits: torch.FloatTensor, | |
labels: torch.LongTensor, | |
average_log_prob: bool = False, | |
) -> torch.FloatTensor: | |
"""Compute the log probabilities of the given labels under the given logits. | |
Args: | |
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size) | |
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size) | |
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. | |
Returns: | |
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. | |
""" | |
assert logits.shape[:-1] == labels.shape | |
labels = labels.clone() | |
loss_mask = labels != -100 | |
# dummy token; we'll ignore the losses on these tokens later | |
labels[labels == -100] = 0 | |
per_token_logps = torch.gather( | |
logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1) | |
).squeeze(-1) | |
if average_log_prob: | |
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) | |
else: | |
return (per_token_logps * loss_mask).sum(-1) | |
def _step(self, batch, batch_idx, stage: str): | |
is_train = stage == "train" | |
# Do positive and negative samples in the same batch to speed up training | |
labels = batch["labels"] | |
outputs = self.model( | |
inp=batch["inputs"], | |
key_padding_mask=batch["attention_masks"], | |
) | |
token_logits = outputs.token_logits | |
codebook_logits = outputs.codebook_logits | |
if self.use_dpo: | |
# Firtst half is positive, second half is negative | |
token_logits, negative_token_logits = token_logits.chunk(2) | |
codebook_logits, negative_codebook_logits = codebook_logits.chunk(2) | |
labels, negative_labels = labels.chunk(2) | |
# Generate labels | |
base_loss = F.cross_entropy( | |
token_logits.reshape(-1, token_logits.size(-1)), | |
labels[:, 0].reshape(-1), | |
ignore_index=-100, | |
) | |
codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT | |
semantic_loss = F.cross_entropy( | |
codebook_logits.reshape(-1, codebook_logits.size(-1)), | |
codebook_labels.reshape(-1), | |
ignore_index=-100, | |
) | |
loss = base_loss + semantic_loss | |
# If we use dpo | |
if self.use_dpo: | |
negative_codebook_labels = negative_labels[ | |
:, 1 : 1 + self.model.config.num_codebooks | |
].mT | |
positive_codebook_logps = self.get_batch_logps( | |
codebook_logits, codebook_labels | |
) | |
negative_codebook_logps = self.get_batch_logps( | |
negative_codebook_logits, negative_codebook_labels | |
) | |
# TODO: implement the reference model, avoid screwing up the gradients | |
dpo_loss = -F.logsigmoid( | |
(positive_codebook_logps - negative_codebook_logps) * self.dpo_beta | |
).mean() | |
chosen_rewards = self.dpo_beta * positive_codebook_logps.detach() | |
rejected_rewards = self.dpo_beta * negative_codebook_logps.detach() | |
reward_accuracy = (chosen_rewards > rejected_rewards).float().mean() | |
chosen_rewards, rejected_rewards = ( | |
chosen_rewards.mean(), | |
rejected_rewards.mean(), | |
) | |
loss = loss + dpo_loss | |
self.log( | |
f"{stage}/dpo_loss", | |
dpo_loss, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
) | |
self.log( | |
f"{stage}/chosen_rewards", | |
chosen_rewards, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
) | |
self.log( | |
f"{stage}/rejected_rewards", | |
rejected_rewards, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
) | |
self.log( | |
f"{stage}/reward_accuracy", | |
reward_accuracy, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
) | |
self.log( | |
f"{stage}/loss", | |
loss, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=True, | |
logger=True, | |
) | |
self.log( | |
f"{stage}/base_loss", | |
base_loss, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
) | |
self.log( | |
f"{stage}/semantic_loss", | |
semantic_loss, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
) | |
# Top-5 accuracy | |
accuracy = self.get_accuracy(codebook_logits, codebook_labels) | |
self.log( | |
f"{stage}/top_5_accuracy", | |
accuracy, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=True, | |
logger=True, | |
) | |
if self.model.config.num_codebooks != self.model.config.num_in_codebooks: | |
accuracy = self.get_accuracy( | |
codebook_logits[:, :, : self.model.config.num_in_codebooks], | |
codebook_labels[:, :, : self.model.config.num_in_codebooks], | |
) | |
self.log( | |
f"{stage}/top_5_accuracy_in", | |
accuracy, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=True, | |
logger=True, | |
) | |
return loss | |
def get_accuracy(self, logits, labels): | |
_, indices = logits.topk(5, dim=-1) | |
correct = indices.eq(labels.unsqueeze(-1)) | |
correct[labels == -100] = 0 | |
correct = correct.sum() | |
accuracy = correct / (labels != -100).sum() | |
return accuracy | |
def training_step(self, batch, batch_idx): | |
return self._step(batch, batch_idx, "train") | |
def validation_step(self, batch, batch_idx): | |
return self._step(batch, batch_idx, "val") | |