Spaces:
Running
on
A10G
Running
on
A10G
import gc | |
import html | |
import io | |
import os | |
import queue | |
import wave | |
from argparse import ArgumentParser | |
from functools import partial | |
from pathlib import Path | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import pyrootutils | |
import torch | |
from loguru import logger | |
from transformers import AutoTokenizer | |
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
from fish_speech.i18n import i18n | |
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText | |
from fish_speech.utils import autocast_exclude_mps | |
from tools.api import decode_vq_tokens, encode_reference | |
from tools.auto_rerank import batch_asr, calculate_wer, is_chinese, load_model | |
from tools.llama.generate import ( | |
GenerateRequest, | |
GenerateResponse, | |
WrappedGenerateResponse, | |
launch_thread_safe_queue, | |
) | |
from tools.vqgan.inference import load_model as load_decoder_model | |
# Make einx happy | |
os.environ["EINX_FILTER_TRACEBACK"] = "false" | |
HEADER_MD = f"""# Fish Speech | |
{i18n("A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).")} | |
{i18n("You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.4).")} | |
{i18n("Related code and weights are released under CC BY-NC-SA 4.0 License.")} | |
{i18n("We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.")} | |
""" | |
TEXTBOX_PLACEHOLDER = i18n("Put your text here.") | |
SPACE_IMPORTED = False | |
def build_html_error_message(error): | |
return f""" | |
<div style="color: red; | |
font-weight: bold;"> | |
{html.escape(str(error))} | |
</div> | |
""" | |
def inference( | |
text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_p, | |
repetition_penalty, | |
temperature, | |
streaming=False, | |
): | |
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length: | |
return ( | |
None, | |
None, | |
i18n("Text is too long, please keep it under {} characters.").format( | |
args.max_gradio_length | |
), | |
) | |
# Parse reference audio aka prompt | |
prompt_tokens = encode_reference( | |
decoder_model=decoder_model, | |
reference_audio=reference_audio, | |
enable_reference_audio=enable_reference_audio, | |
) | |
# LLAMA Inference | |
request = dict( | |
device=decoder_model.device, | |
max_new_tokens=max_new_tokens, | |
text=text, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
temperature=temperature, | |
compile=args.compile, | |
iterative_prompt=chunk_length > 0, | |
chunk_length=chunk_length, | |
max_length=2048, | |
prompt_tokens=prompt_tokens if enable_reference_audio else None, | |
prompt_text=reference_text if enable_reference_audio else None, | |
) | |
response_queue = queue.Queue() | |
llama_queue.put( | |
GenerateRequest( | |
request=request, | |
response_queue=response_queue, | |
) | |
) | |
if streaming: | |
yield wav_chunk_header(), None, None | |
segments = [] | |
while True: | |
result: WrappedGenerateResponse = response_queue.get() | |
if result.status == "error": | |
yield None, None, build_html_error_message(result.response) | |
break | |
result: GenerateResponse = result.response | |
if result.action == "next": | |
break | |
with autocast_exclude_mps( | |
device_type=decoder_model.device.type, dtype=args.precision | |
): | |
fake_audios = decode_vq_tokens( | |
decoder_model=decoder_model, | |
codes=result.codes, | |
) | |
fake_audios = fake_audios.float().cpu().numpy() | |
segments.append(fake_audios) | |
if streaming: | |
yield (fake_audios * 32768).astype(np.int16).tobytes(), None, None | |
if len(segments) == 0: | |
return ( | |
None, | |
None, | |
build_html_error_message( | |
i18n("No audio generated, please check the input text.") | |
), | |
) | |
# No matter streaming or not, we need to return the final audio | |
audio = np.concatenate(segments, axis=0) | |
yield None, (decoder_model.spec_transform.sample_rate, audio), None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
def inference_with_auto_rerank( | |
text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_p, | |
repetition_penalty, | |
temperature, | |
use_auto_rerank, | |
streaming=False, | |
): | |
max_attempts = 2 if use_auto_rerank else 1 | |
best_wer = float("inf") | |
best_audio = None | |
best_sample_rate = None | |
for attempt in range(max_attempts): | |
audio_generator = inference( | |
text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_p, | |
repetition_penalty, | |
temperature, | |
streaming=False, | |
) | |
# 获取音频数据 | |
for _ in audio_generator: | |
pass | |
_, (sample_rate, audio), message = _ | |
if audio is None: | |
return None, None, message | |
if not use_auto_rerank: | |
return None, (sample_rate, audio), None | |
asr_result = batch_asr(asr_model, [audio], sample_rate)[0] | |
wer = calculate_wer(text, asr_result["text"]) | |
if wer <= 0.3 and not asr_result["huge_gap"]: | |
return None, (sample_rate, audio), None | |
if wer < best_wer: | |
best_wer = wer | |
best_audio = audio | |
best_sample_rate = sample_rate | |
if attempt == max_attempts - 1: | |
break | |
return None, (best_sample_rate, best_audio), None | |
inference_stream = partial(inference, streaming=True) | |
n_audios = 4 | |
global_audio_list = [] | |
global_error_list = [] | |
def inference_wrapper( | |
text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_p, | |
repetition_penalty, | |
temperature, | |
batch_infer_num, | |
if_load_asr_model, | |
): | |
audios = [] | |
errors = [] | |
for _ in range(batch_infer_num): | |
result = inference_with_auto_rerank( | |
text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_p, | |
repetition_penalty, | |
temperature, | |
if_load_asr_model, | |
) | |
_, audio_data, error_message = result | |
audios.append( | |
gr.Audio(value=audio_data if audio_data else None, visible=True), | |
) | |
errors.append( | |
gr.HTML(value=error_message if error_message else None, visible=True), | |
) | |
for _ in range(batch_infer_num, n_audios): | |
audios.append( | |
gr.Audio(value=None, visible=False), | |
) | |
errors.append( | |
gr.HTML(value=None, visible=False), | |
) | |
return None, *audios, *errors | |
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): | |
buffer = io.BytesIO() | |
with wave.open(buffer, "wb") as wav_file: | |
wav_file.setnchannels(channels) | |
wav_file.setsampwidth(bit_depth // 8) | |
wav_file.setframerate(sample_rate) | |
wav_header_bytes = buffer.getvalue() | |
buffer.close() | |
return wav_header_bytes | |
def normalize_text(user_input, use_normalization): | |
if use_normalization: | |
return ChnNormedText(raw_text=user_input).normalize() | |
else: | |
return user_input | |
asr_model = None | |
def change_if_load_asr_model(if_load): | |
global asr_model | |
if if_load: | |
gr.Warning("Loading faster whisper model...") | |
if asr_model is None: | |
asr_model = load_model() | |
return gr.Checkbox(label="Unload faster whisper model", value=if_load) | |
if if_load is False: | |
gr.Warning("Unloading faster whisper model...") | |
del asr_model | |
asr_model = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
return gr.Checkbox(label="Load faster whisper model", value=if_load) | |
def change_if_auto_label(if_load, if_auto_label, enable_ref, ref_audio, ref_text): | |
if if_load and asr_model is not None: | |
if ( | |
if_auto_label | |
and enable_ref | |
and ref_audio is not None | |
and ref_text.strip() == "" | |
): | |
data, sample_rate = librosa.load(ref_audio) | |
res = batch_asr(asr_model, [data], sample_rate)[0] | |
ref_text = res["text"] | |
else: | |
gr.Warning("Whisper model not loaded!") | |
return gr.Textbox(value=ref_text) | |
def build_app(): | |
with gr.Blocks(theme=gr.themes.Base()) as app: | |
gr.Markdown(HEADER_MD) | |
# Use light theme by default | |
app.load( | |
None, | |
None, | |
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}" | |
% args.theme, | |
) | |
# Inference | |
with gr.Row(): | |
with gr.Column(scale=3): | |
text = gr.Textbox( | |
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10 | |
) | |
refined_text = gr.Textbox( | |
label=i18n("Realtime Transform Text"), | |
placeholder=i18n( | |
"Normalization Result Preview (Currently Only Chinese)" | |
), | |
lines=5, | |
interactive=False, | |
) | |
with gr.Row(): | |
if_refine_text = gr.Checkbox( | |
label=i18n("Text Normalization"), | |
value=False, | |
scale=1, | |
) | |
if_load_asr_model = gr.Checkbox( | |
label=i18n("Load / Unload ASR model for auto-reranking"), | |
value=False, | |
scale=3, | |
) | |
with gr.Row(): | |
with gr.Tab(label=i18n("Advanced Config")): | |
chunk_length = gr.Slider( | |
label=i18n("Iterative Prompt Length, 0 means off"), | |
minimum=50, | |
maximum=300, | |
value=200, | |
step=8, | |
) | |
max_new_tokens = gr.Slider( | |
label=i18n("Maximum tokens per batch, 0 means no limit"), | |
minimum=0, | |
maximum=2048, | |
value=1024, # 0 means no limit | |
step=8, | |
) | |
top_p = gr.Slider( | |
label="Top-P", | |
minimum=0.6, | |
maximum=0.9, | |
value=0.7, | |
step=0.01, | |
) | |
repetition_penalty = gr.Slider( | |
label=i18n("Repetition Penalty"), | |
minimum=1, | |
maximum=1.5, | |
value=1.2, | |
step=0.01, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.6, | |
maximum=0.9, | |
value=0.7, | |
step=0.01, | |
) | |
with gr.Tab(label=i18n("Reference Audio")): | |
gr.Markdown( | |
i18n( | |
"5 to 10 seconds of reference audio, useful for specifying speaker." | |
) | |
) | |
enable_reference_audio = gr.Checkbox( | |
label=i18n("Enable Reference Audio"), | |
) | |
reference_audio = gr.Audio( | |
label=i18n("Reference Audio"), | |
type="filepath", | |
) | |
with gr.Row(): | |
if_auto_label = gr.Checkbox( | |
label=i18n("Auto Labeling"), | |
min_width=100, | |
scale=0, | |
value=False, | |
) | |
reference_text = gr.Textbox( | |
label=i18n("Reference Text"), | |
lines=1, | |
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。", | |
value="", | |
) | |
with gr.Tab(label=i18n("Batch Inference")): | |
batch_infer_num = gr.Slider( | |
label="Batch infer nums", | |
minimum=1, | |
maximum=n_audios, | |
step=1, | |
value=1, | |
) | |
with gr.Column(scale=3): | |
for _ in range(n_audios): | |
with gr.Row(): | |
error = gr.HTML( | |
label=i18n("Error Message"), | |
visible=True if _ == 0 else False, | |
) | |
global_error_list.append(error) | |
with gr.Row(): | |
audio = gr.Audio( | |
label=i18n("Generated Audio"), | |
type="numpy", | |
interactive=False, | |
visible=True if _ == 0 else False, | |
) | |
global_audio_list.append(audio) | |
with gr.Row(): | |
stream_audio = gr.Audio( | |
label=i18n("Streaming Audio"), | |
streaming=True, | |
autoplay=True, | |
interactive=False, | |
show_download_button=True, | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
generate = gr.Button( | |
value="\U0001F3A7 " + i18n("Generate"), variant="primary" | |
) | |
generate_stream = gr.Button( | |
value="\U0001F3A7 " + i18n("Streaming Generate"), | |
variant="primary", | |
) | |
text.input( | |
fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text] | |
) | |
if_load_asr_model.change( | |
fn=change_if_load_asr_model, | |
inputs=[if_load_asr_model], | |
outputs=[if_load_asr_model], | |
) | |
if_auto_label.change( | |
fn=lambda: gr.Textbox(value=""), | |
inputs=[], | |
outputs=[reference_text], | |
).then( | |
fn=change_if_auto_label, | |
inputs=[ | |
if_load_asr_model, | |
if_auto_label, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
], | |
outputs=[reference_text], | |
) | |
# # Submit | |
generate.click( | |
inference_wrapper, | |
[ | |
refined_text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_p, | |
repetition_penalty, | |
temperature, | |
batch_infer_num, | |
if_load_asr_model, | |
], | |
[stream_audio, *global_audio_list, *global_error_list], | |
concurrency_limit=1, | |
) | |
generate_stream.click( | |
inference_stream, | |
[ | |
refined_text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_p, | |
repetition_penalty, | |
temperature, | |
], | |
[stream_audio, global_audio_list[0], global_error_list[0]], | |
concurrency_limit=10, | |
) | |
return app | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument( | |
"--llama-checkpoint-path", | |
type=Path, | |
default="checkpoints/fish-speech-1.4", | |
) | |
parser.add_argument( | |
"--decoder-checkpoint-path", | |
type=Path, | |
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", | |
) | |
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq") | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--half", action="store_true") | |
parser.add_argument("--compile", action="store_true") | |
parser.add_argument("--max-gradio-length", type=int, default=0) | |
parser.add_argument("--theme", type=str, default="light") | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = parse_args() | |
args.precision = torch.half if args.half else torch.bfloat16 | |
logger.info("Loading Llama model...") | |
llama_queue = launch_thread_safe_queue( | |
checkpoint_path=args.llama_checkpoint_path, | |
device=args.device, | |
precision=args.precision, | |
compile=args.compile, | |
) | |
logger.info("Llama model loaded, loading VQ-GAN model...") | |
decoder_model = load_decoder_model( | |
config_name=args.decoder_config_name, | |
checkpoint_path=args.decoder_checkpoint_path, | |
device=args.device, | |
) | |
logger.info("Decoder model loaded, warming up...") | |
# Dry run to check if the model is loaded correctly and avoid the first-time latency | |
list( | |
inference( | |
text="Hello, world!", | |
enable_reference_audio=False, | |
reference_audio=None, | |
reference_text="", | |
max_new_tokens=0, | |
chunk_length=100, | |
top_p=0.7, | |
repetition_penalty=1.2, | |
temperature=0.7, | |
) | |
) | |
logger.info("Warming up done, launching the web UI...") | |
app = build_app() | |
app.launch(show_api=True) | |