from pathlib import Path import click import hydra import librosa import numpy as np import soundfile as sf import torch from hydra import compose, initialize from hydra.utils import instantiate from lightning import LightningModule from loguru import logger from omegaconf import OmegaConf from fish_speech.utils.file import AUDIO_EXTENSIONS # register eval resolver OmegaConf.register_new_resolver("eval", eval) def load_model(config_name, checkpoint_path, device="cuda"): hydra.core.global_hydra.GlobalHydra.instance().clear() with initialize(version_base="1.3", config_path="../../fish_speech/configs"): cfg = compose(config_name=config_name) model: LightningModule = instantiate(cfg.model) state_dict = torch.load( checkpoint_path, map_location=model.device, ) if "state_dict" in state_dict: state_dict = state_dict["state_dict"] model.load_state_dict(state_dict, strict=False) model.eval() model.to(device) logger.info("Restored model from checkpoint") return model @torch.no_grad() @click.command() @click.option( "--input-path", "-i", default="test.wav", type=click.Path(exists=True, path_type=Path), ) @click.option( "--output-path", "-o", default="fake.wav", type=click.Path(path_type=Path) ) @click.option("--config-name", "-cfg", default="vqgan_pretrain") @click.option( "--checkpoint-path", "-ckpt", default="checkpoints/vq-gan-group-fsq-2x1024.pth", ) @click.option( "--device", "-d", default="cuda", ) def main(input_path, output_path, config_name, checkpoint_path, device): model = load_model(config_name, checkpoint_path, device=device) if input_path.suffix in AUDIO_EXTENSIONS: logger.info(f"Processing in-place reconstruction of {input_path}") # Load audio audio, _ = librosa.load( input_path, sr=model.sampling_rate, mono=True, ) audios = torch.from_numpy(audio).to(model.device)[None, None, :] logger.info( f"Loaded audio with {audios.shape[2] / model.sampling_rate:.2f} seconds" ) # VQ Encoder audio_lengths = torch.tensor( [audios.shape[2]], device=model.device, dtype=torch.long ) indices = model.encode(audios, audio_lengths)[0][0] logger.info(f"Generated indices of shape {indices.shape}") # Save indices np.save(output_path.with_suffix(".npy"), indices.cpu().numpy()) elif input_path.suffix == ".npy": logger.info(f"Processing precomputed indices from {input_path}") indices = np.load(input_path) indices = torch.from_numpy(indices).to(model.device).long() assert indices.ndim == 2, f"Expected 2D indices, got {indices.ndim}" else: raise ValueError(f"Unknown input type: {input_path}") # Restore feature_lengths = torch.tensor([indices.shape[1]], device=model.device) fake_audios = model.decode( indices=indices[None], feature_lengths=feature_lengths, return_audios=True ) audio_time = fake_audios.shape[-1] / model.sampling_rate logger.info( f"Generated audio of shape {fake_audios.shape}, equivalent to {audio_time:.2f} seconds from {indices.shape[1]} features, features/second: {indices.shape[1] / audio_time:.2f}" ) # Save audio fake_audio = fake_audios[0, 0].float().cpu().numpy() sf.write(output_path, fake_audio, model.sampling_rate) logger.info(f"Saved audio to {output_path}") if __name__ == "__main__": main()