Spaces:
Runtime error
Runtime error
File size: 4,801 Bytes
ac6acf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import comfy.utils
import torch
def reshape_latent_to(target_shape, latent):
if latent.shape[1:] != target_shape[1:]:
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
return comfy.utils.repeat_to_batch_size(latent, target_shape[0])
class LatentAdd:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
s2 = reshape_latent_to(s1.shape, s2)
samples_out["samples"] = s1 + s2
return (samples_out,)
class LatentSubtract:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
s2 = reshape_latent_to(s1.shape, s2)
samples_out["samples"] = s1 - s2
return (samples_out,)
class LatentMultiply:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, multiplier):
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = s1 * multiplier
return (samples_out,)
class LatentInterpolate:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",),
"samples2": ("LATENT",),
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2, ratio):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
s2 = reshape_latent_to(s1.shape, s2)
m1 = torch.linalg.vector_norm(s1, dim=(1))
m2 = torch.linalg.vector_norm(s2, dim=(1))
s1 = torch.nan_to_num(s1 / m1)
s2 = torch.nan_to_num(s2 / m2)
t = (s1 * ratio + s2 * (1.0 - ratio))
mt = torch.linalg.vector_norm(t, dim=(1))
st = torch.nan_to_num(t / mt)
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
return (samples_out,)
class LatentBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "batch"
CATEGORY = "latent/batch"
def batch(self, samples1, samples2):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
if s1.shape[1:] != s2.shape[1:]:
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
s = torch.cat((s1, s2), dim=0)
samples_out["samples"] = s
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
return (samples_out,)
class LatentBatchSeedBehavior:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"seed_behavior": (["random", "fixed"],{"default": "fixed"}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, seed_behavior):
samples_out = samples.copy()
latent = samples["samples"]
if seed_behavior == "random":
if 'batch_index' in samples_out:
samples_out.pop('batch_index')
elif seed_behavior == "fixed":
batch_number = samples_out.get("batch_index", [0])[0]
samples_out["batch_index"] = [batch_number] * latent.shape[0]
return (samples_out,)
NODE_CLASS_MAPPINGS = {
"LatentAdd": LatentAdd,
"LatentSubtract": LatentSubtract,
"LatentMultiply": LatentMultiply,
"LatentInterpolate": LatentInterpolate,
"LatentBatch": LatentBatch,
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
}
|