File size: 30,619 Bytes
ac6acf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import torch
import logging
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from comfy.ldm.cascade.stage_c import StageC
from comfy.ldm.cascade.stage_b import StageB
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
import comfy.ldm.aura.mmdit
import comfy.ldm.hydit.models
import comfy.ldm.audio.dit
import comfy.ldm.audio.embedders
import comfy.model_management
import comfy.conds
import comfy.ops
from enum import Enum
from . import utils
import comfy.latent_formats
import math

class ModelType(Enum):
    EPS = 1
    V_PREDICTION = 2
    V_PREDICTION_EDM = 3
    STABLE_CASCADE = 4
    EDM = 5
    FLOW = 6
    V_PREDICTION_CONTINUOUS = 7


from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV


def model_sampling(model_config, model_type):
    s = ModelSamplingDiscrete

    if model_type == ModelType.EPS:
        c = EPS
    elif model_type == ModelType.V_PREDICTION:
        c = V_PREDICTION
    elif model_type == ModelType.V_PREDICTION_EDM:
        c = V_PREDICTION
        s = ModelSamplingContinuousEDM
    elif model_type == ModelType.FLOW:
        c = comfy.model_sampling.CONST
        s = comfy.model_sampling.ModelSamplingDiscreteFlow
    elif model_type == ModelType.STABLE_CASCADE:
        c = EPS
        s = StableCascadeSampling
    elif model_type == ModelType.EDM:
        c = EDM
        s = ModelSamplingContinuousEDM
    elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
        c = V_PREDICTION
        s = ModelSamplingContinuousV

    class ModelSampling(s, c):
        pass

    return ModelSampling(model_config)


class BaseModel(torch.nn.Module):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
        super().__init__()

        unet_config = model_config.unet_config
        self.latent_format = model_config.latent_format
        self.model_config = model_config
        self.manual_cast_dtype = model_config.manual_cast_dtype

        if not unet_config.get("disable_unet_model_creation", False):
            if self.manual_cast_dtype is not None:
                operations = comfy.ops.manual_cast
            else:
                operations = comfy.ops.disable_weight_init
            self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
            if comfy.model_management.force_channels_last():
                self.diffusion_model.to(memory_format=torch.channels_last)
                logging.debug("using channels last mode for diffusion model")
        self.model_type = model_type
        self.model_sampling = model_sampling(model_config, model_type)

        self.adm_channels = unet_config.get("adm_in_channels", None)
        if self.adm_channels is None:
            self.adm_channels = 0

        self.concat_keys = ()
        logging.info("model_type {}".format(model_type.name))
        logging.debug("adm {}".format(self.adm_channels))

    def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
        sigma = t
        xc = self.model_sampling.calculate_input(sigma, x)
        if c_concat is not None:
            xc = torch.cat([xc] + [c_concat], dim=1)

        context = c_crossattn
        dtype = self.get_dtype()

        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype

        xc = xc.to(dtype)
        t = self.model_sampling.timestep(t).float()
        context = context.to(dtype)
        extra_conds = {}
        for o in kwargs:
            extra = kwargs[o]
            if hasattr(extra, "dtype"):
                if extra.dtype != torch.int and extra.dtype != torch.long:
                    extra = extra.to(dtype)
            extra_conds[o] = extra

        model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
        return self.model_sampling.calculate_denoised(sigma, model_output, x)

    def get_dtype(self):
        return self.diffusion_model.dtype

    def is_adm(self):
        return self.adm_channels > 0

    def encode_adm(self, **kwargs):
        return None

    def extra_conds(self, **kwargs):
        out = {}
        if len(self.concat_keys) > 0:
            cond_concat = []
            denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
            concat_latent_image = kwargs.get("concat_latent_image", None)
            if concat_latent_image is None:
                concat_latent_image = kwargs.get("latent_image", None)
            else:
                concat_latent_image = self.process_latent_in(concat_latent_image)

            noise = kwargs.get("noise", None)
            device = kwargs["device"]

            if concat_latent_image.shape[1:] != noise.shape[1:]:
                concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

            concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])

            if denoise_mask is not None:
                if len(denoise_mask.shape) == len(noise.shape):
                    denoise_mask = denoise_mask[:,:1]

                denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
                if denoise_mask.shape[-2:] != noise.shape[-2:]:
                    denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
                denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])

            for ck in self.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask.to(device))
                    elif ck == "masked_image":
                        cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(self.blank_inpaint_image_like(noise))
            data = torch.cat(cond_concat, dim=1)
            out['c_concat'] = comfy.conds.CONDNoiseShape(data)

        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = comfy.conds.CONDRegular(adm)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

        cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
        if cross_attn_cnet is not None:
            out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet)

        c_concat = kwargs.get("noise_concat", None)
        if c_concat is not None:
            out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat)

        return out

    def load_model_weights(self, sd, unet_prefix=""):
        to_load = {}
        keys = list(sd.keys())
        for k in keys:
            if k.startswith(unet_prefix):
                to_load[k[len(unet_prefix):]] = sd.pop(k)

        to_load = self.model_config.process_unet_state_dict(to_load)
        m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
        if len(m) > 0:
            logging.warning("unet missing: {}".format(m))

        if len(u) > 0:
            logging.warning("unet unexpected: {}".format(u))
        del to_load
        return self

    def process_latent_in(self, latent):
        return self.latent_format.process_in(latent)

    def process_latent_out(self, latent):
        return self.latent_format.process_out(latent)

    def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
        extra_sds = []
        if clip_state_dict is not None:
            extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
        if vae_state_dict is not None:
            extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
        if clip_vision_state_dict is not None:
            extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))

        unet_state_dict = self.diffusion_model.state_dict()
        unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)

        if self.model_type == ModelType.V_PREDICTION:
            unet_state_dict["v_pred"] = torch.tensor([])

        for sd in extra_sds:
            unet_state_dict.update(sd)

        return unet_state_dict

    def set_inpaint(self):
        self.concat_keys = ("mask", "masked_image")
        def blank_inpaint_image_like(latent_image):
            blank_image = torch.ones_like(latent_image)
            # these are the values for "zero" in pixel space translated to latent space
            blank_image[:,0] *= 0.8223
            blank_image[:,1] *= -0.6876
            blank_image[:,2] *= 0.6364
            blank_image[:,3] *= 0.1380
            return blank_image
        self.blank_inpaint_image_like = blank_inpaint_image_like

    def memory_required(self, input_shape):
        if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
            dtype = self.get_dtype()
            if self.manual_cast_dtype is not None:
                dtype = self.manual_cast_dtype
            #TODO: this needs to be tweaked
            area = input_shape[0] * math.prod(input_shape[2:])
            return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
        else:
            #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
            area = input_shape[0] * math.prod(input_shape[2:])
            return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)


def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
    adm_inputs = []
    weights = []
    noise_aug = []
    for unclip_cond in unclip_conditioning:
        for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
            weight = unclip_cond["strength"]
            noise_augment = unclip_cond["noise_augmentation"]
            noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
            c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
            adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
            weights.append(weight)
            noise_aug.append(noise_augment)
            adm_inputs.append(adm_out)

    if len(noise_aug) > 1:
        adm_out = torch.stack(adm_inputs).sum(0)
        noise_augment = noise_augment_merge
        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
        c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
        adm_out = torch.cat((c_adm, noise_level_emb), 1)

    return adm_out

class SD21UNCLIP(BaseModel):
    def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)

    def encode_adm(self, **kwargs):
        unclip_conditioning = kwargs.get("unclip_conditioning", None)
        device = kwargs["device"]
        if unclip_conditioning is None:
            return torch.zeros((1, self.adm_channels))
        else:
            return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)

def sdxl_pooled(args, noise_augmentor):
    if "unclip_conditioning" in args:
        return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
    else:
        return args["pooled_output"]

class SDXLRefiner(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})

    def encode_adm(self, **kwargs):
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)

        if kwargs.get("prompt_type", "") == "negative":
            aesthetic_score = kwargs.get("aesthetic_score", 2.5)
        else:
            aesthetic_score = kwargs.get("aesthetic_score", 6)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([aesthetic_score])))
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SDXL(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})

    def encode_adm(self, **kwargs):
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([target_height])))
        out.append(self.embedder(torch.Tensor([target_width])))
        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class SVD_img2vid(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder = Timestep(256)

    def encode_adm(self, **kwargs):
        fps_id = kwargs.get("fps", 6) - 1
        motion_bucket_id = kwargs.get("motion_bucket_id", 127)
        augmentation = kwargs.get("augmentation_level", 0)

        out = []
        out.append(self.embedder(torch.Tensor([fps_id])))
        out.append(self.embedder(torch.Tensor([motion_bucket_id])))
        out.append(self.embedder(torch.Tensor([augmentation])))

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
        return flat

    def extra_conds(self, **kwargs):
        out = {}
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = comfy.conds.CONDRegular(adm)

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)

        if "time_conditioning" in kwargs:
            out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])

        out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
        return out

class SV3D_u(SVD_img2vid):
    def encode_adm(self, **kwargs):
        augmentation = kwargs.get("augmentation_level", 0)

        out = []
        out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
        return flat

class SV3D_p(SVD_img2vid):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
        super().__init__(model_config, model_type, device=device)
        self.embedder_512 = Timestep(512)

    def encode_adm(self, **kwargs):
        augmentation = kwargs.get("augmentation_level", 0)
        elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here
        azimuth = kwargs.get("azimuth", 0)
        noise = kwargs.get("noise", None)

        out = []
        out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
        out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0))))
        out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0))))

        out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out))
        return torch.cat(out, dim=1)


class Stable_Zero123(BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
        super().__init__(model_config, model_type, device=device)
        self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
        self.cc_projection.weight.copy_(cc_projection_weight)
        self.cc_projection.bias.copy_(cc_projection_bias)

    def extra_conds(self, **kwargs):
        out = {}

        latent_image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)

        if latent_image is None:
            latent_image = torch.zeros_like(noise)

        if latent_image.shape[1:] != noise.shape[1:]:
            latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")

        latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            if cross_attn.shape[-1] != 768:
                cross_attn = self.cc_projection(cross_attn)
            out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
        return out

class SD_X4Upscaler(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device)
        self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)

    def extra_conds(self, **kwargs):
        out = {}

        image = kwargs.get("concat_image", None)
        noise = kwargs.get("noise", None)
        noise_augment = kwargs.get("noise_augmentation", 0.0)
        device = kwargs["device"]
        seed = kwargs["seed"] - 10

        noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)

        if image is None:
            image = torch.zeros_like(noise)[:,:3]

        if image.shape[1:] != noise.shape[1:]:
            image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")

        noise_level = torch.tensor([noise_level], device=device)
        if noise_augment > 0:
            image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)

        image = utils.resize_to_batch_size(image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(image)
        out['y'] = comfy.conds.CONDRegular(noise_level)
        return out

class IP2P:
    def extra_conds(self, **kwargs):
        out = {}

        image = kwargs.get("concat_latent_image", None)
        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        if image is None:
            image = torch.zeros_like(noise)

        if image.shape[1:] != noise.shape[1:]:
            image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")

        image = utils.resize_to_batch_size(image, noise.shape[0])

        out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_ip2p_image_in(image))
        adm = self.encode_adm(**kwargs)
        if adm is not None:
            out['y'] = comfy.conds.CONDRegular(adm)
        return out

class SD15_instructpix2pix(IP2P, BaseModel):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        self.process_ip2p_image_in = lambda image: image

class SDXL_instructpix2pix(IP2P, SDXL):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        super().__init__(model_config, model_type, device=device)
        if model_type == ModelType.V_PREDICTION_EDM:
            self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p
        else:
            self.process_ip2p_image_in = lambda image: image #diffusers ip2p


class StableCascade_C(BaseModel):
    def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=StageC)
        self.diffusion_model.eval().requires_grad_(False)

    def extra_conds(self, **kwargs):
        out = {}
        clip_text_pooled = kwargs["pooled_output"]
        if clip_text_pooled is not None:
            out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)

        if "unclip_conditioning" in kwargs:
            embeds = []
            for unclip_cond in kwargs["unclip_conditioning"]:
                weight = unclip_cond["strength"]
                embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight)
            clip_img = torch.cat(embeds, dim=1)
        else:
            clip_img = torch.zeros((1, 1, 768))
        out["clip_img"] = comfy.conds.CONDRegular(clip_img)
        out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
        out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,)))

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn)
        return out


class StableCascade_B(BaseModel):
    def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=StageB)
        self.diffusion_model.eval().requires_grad_(False)

    def extra_conds(self, **kwargs):
        out = {}
        noise = kwargs.get("noise", None)

        clip_text_pooled = kwargs["pooled_output"]
        if clip_text_pooled is not None:
            out['clip'] = comfy.conds.CONDRegular(clip_text_pooled)

        #size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
        prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))

        out["effnet"] = comfy.conds.CONDRegular(prior)
        out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
        return out


class SD3(BaseModel):
    def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper)

    def encode_adm(self, **kwargs):
        return kwargs["pooled_output"]

    def extra_conds(self, **kwargs):
        out = super().extra_conds(**kwargs)
        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
        return out

    def memory_required(self, input_shape):
        if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
            dtype = self.get_dtype()
            if self.manual_cast_dtype is not None:
                dtype = self.manual_cast_dtype
            #TODO: this probably needs to be tweaked
            area = input_shape[0] * input_shape[2] * input_shape[3]
            return (area * comfy.model_management.dtype_size(dtype) * 0.012) * (1024 * 1024)
        else:
            area = input_shape[0] * input_shape[2] * input_shape[3]
            return (area * 0.3) * (1024 * 1024)

class AuraFlow(BaseModel):
    def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.aura.mmdit.MMDiT)

    def extra_conds(self, **kwargs):
        out = super().extra_conds(**kwargs)
        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
        return out


class StableAudio1(BaseModel):
    def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer)
        self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
        self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512)
        self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights)
        self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights)

    def extra_conds(self, **kwargs):
        out = {}

        noise = kwargs.get("noise", None)
        device = kwargs["device"]

        seconds_start = kwargs.get("seconds_start", 0)
        seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53))

        seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device)
        seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device)

        global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1))
        out['global_embed'] = comfy.conds.CONDRegular(global_embed)

        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1)
            out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
        return out

    def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
        sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
        d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()}
        for k in d:
            s = d[k]
            for l in s:
                sd["{}{}".format(k, l)] = s[l]
        return sd

class HunyuanDiT(BaseModel):
    def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
        super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hydit.models.HunYuanDiT)

    def extra_conds(self, **kwargs):
        out = super().extra_conds(**kwargs)
        cross_attn = kwargs.get("cross_attn", None)
        if cross_attn is not None:
            out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)

        attention_mask = kwargs.get("attention_mask", None)
        if attention_mask is not None:
            out['text_embedding_mask'] = comfy.conds.CONDRegular(attention_mask)

        conditioning_mt5xl = kwargs.get("conditioning_mt5xl", None)
        if conditioning_mt5xl is not None:
            out['encoder_hidden_states_t5'] = comfy.conds.CONDRegular(conditioning_mt5xl)

        attention_mask_mt5xl = kwargs.get("attention_mask_mt5xl", None)
        if attention_mask_mt5xl is not None:
            out['text_embedding_mask_t5'] = comfy.conds.CONDRegular(attention_mask_mt5xl)

        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]]))
        return out