File size: 9,244 Bytes
ac6acf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""

    This file is part of ComfyUI.

    Copyright (C) 2024 Stability AI



    This program is free software: you can redistribute it and/or modify

    it under the terms of the GNU General Public License as published by

    the Free Software Foundation, either version 3 of the License, or

    (at your option) any later version.



    This program is distributed in the hope that it will be useful,

    but WITHOUT ANY WARRANTY; without even the implied warranty of

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

    GNU General Public License for more details.



    You should have received a copy of the GNU General Public License

    along with this program.  If not, see <https://www.gnu.org/licenses/>.

"""

import torch
import comfy.model_management


def cast_to(weight, dtype=None, device=None, non_blocking=False):
    return weight.to(device=device, dtype=dtype, non_blocking=non_blocking)

def cast_to_input(weight, input, non_blocking=False):
    return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking)

def cast_bias_weight(s, input=None, dtype=None, device=None):
    if input is not None:
        if dtype is None:
            dtype = input.dtype
        if device is None:
            device = input.device

    bias = None
    non_blocking = comfy.model_management.device_should_use_non_blocking(device)
    if s.bias is not None:
        bias = cast_to(s.bias, dtype, device, non_blocking=non_blocking)
        if s.bias_function is not None:
            bias = s.bias_function(bias)
    weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking)
    if s.weight_function is not None:
        weight = s.weight_function(weight)
    return weight, bias

class CastWeightBiasOp:
    comfy_cast_weights = False
    weight_function = None
    bias_function = None

class disable_weight_init:
    class Linear(torch.nn.Linear, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)


    class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            if self.weight is not None:
                weight, bias = cast_bias_weight(self, input)
            else:
                weight = None
                bias = None
            return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            num_spatial_dims = 2
            output_padding = self._output_padding(
                input, output_size, self.stride, self.padding, self.kernel_size,
                num_spatial_dims, self.dilation)

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose2d(
                input, weight, bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            num_spatial_dims = 1
            output_padding = self._output_padding(
                input, output_size, self.stride, self.padding, self.kernel_size,
                num_spatial_dims, self.dilation)

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose1d(
                input, weight, bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Embedding(torch.nn.Embedding, CastWeightBiasOp):
        def reset_parameters(self):
            self.bias = None
            return None

        def forward_comfy_cast_weights(self, input, out_dtype=None):
            output_dtype = out_dtype
            if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
                out_dtype = None
            weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
            return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                if "out_dtype" in kwargs:
                    kwargs.pop("out_dtype")
                return super().forward(*args, **kwargs)

    @classmethod
    def conv_nd(s, dims, *args, **kwargs):
        if dims == 2:
            return s.Conv2d(*args, **kwargs)
        elif dims == 3:
            return s.Conv3d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")


class manual_cast(disable_weight_init):
    class Linear(disable_weight_init.Linear):
        comfy_cast_weights = True

    class Conv1d(disable_weight_init.Conv1d):
        comfy_cast_weights = True

    class Conv2d(disable_weight_init.Conv2d):
        comfy_cast_weights = True

    class Conv3d(disable_weight_init.Conv3d):
        comfy_cast_weights = True

    class GroupNorm(disable_weight_init.GroupNorm):
        comfy_cast_weights = True

    class LayerNorm(disable_weight_init.LayerNorm):
        comfy_cast_weights = True

    class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
        comfy_cast_weights = True

    class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
        comfy_cast_weights = True

    class Embedding(disable_weight_init.Embedding):
        comfy_cast_weights = True