Spaces:
Runtime error
Runtime error
File size: 11,916 Bytes
ac6acf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import torch
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
class T5LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
self.variance_epsilon = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
return self.weight.to(device=x.device, dtype=x.dtype) * x
class T5DenseActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device, operations):
super().__init__()
self.wi = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
x = torch.nn.functional.relu(self.wi(x))
# x = self.dropout(x)
x = self.wo(x)
return x
class T5DenseGatedActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device, operations):
super().__init__()
self.wi_0 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wi_1 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
hidden_linear = self.wi_1(x)
x = hidden_gelu * hidden_linear
# x = self.dropout(x)
x = self.wo(x)
return x
class T5LayerFF(torch.nn.Module):
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
super().__init__()
if ff_activation == "gelu_pytorch_tanh":
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device, operations)
elif ff_activation == "relu":
self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, dtype, device, operations)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
forwarded_states = self.layer_norm(x)
forwarded_states = self.DenseReluDense(forwarded_states)
# x = x + self.dropout(forwarded_states)
x += forwarded_states
return x
class T5Attention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations):
super().__init__()
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.k = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.v = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.o = operations.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
self.num_heads = num_heads
self.relative_attention_bias = None
if relative_attention_bias:
self.relative_attention_num_buckets = 32
self.relative_attention_max_distance = 128
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device):
"""Compute binned relative position bias"""
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.relative_attention_bias is not None:
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
if past_bias is not None:
if mask is not None:
mask = mask + past_bias
else:
mask = past_bias
out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
return self.o(out), past_bias
class T5LayerSelfAttention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations):
super().__init__()
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
normed_hidden_states = self.layer_norm(x)
output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias, optimized_attention=optimized_attention)
# x = x + self.dropout(attention_output)
x += output
return x, past_bias
class T5Block(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias, dtype, device, operations):
super().__init__()
self.layer = torch.nn.ModuleList()
self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations))
self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, dtype, device, operations))
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention)
x = self.layer[-1](x)
return x, past_bias
class T5Stack(torch.nn.Module):
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, num_heads, dtype, device, operations):
super().__init__()
self.block = torch.nn.ModuleList(
[T5Block(model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device, operations=operations) for i in range(num_layers)]
)
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
intermediate = None
optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True)
past_bias = None
for i, l in enumerate(self.block):
x, past_bias = l(x, mask, past_bias, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
x = self.final_layer_norm(x)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.final_layer_norm(intermediate)
return x, intermediate
class T5(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
self.num_layers = config_dict["num_layers"]
model_dim = config_dict["d_model"]
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["num_heads"], dtype, device, operations)
self.dtype = dtype
self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device)
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, embeddings):
self.shared = embeddings
def forward(self, input_ids, *args, **kwargs):
x = self.shared(input_ids)
return self.encoder(x, *args, **kwargs)
|