Spaces:
Runtime error
Runtime error
File size: 12,734 Bytes
6d5e45b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import sys
sys.path.append(
os.path.dirname(os.path.abspath(__file__))
)
import copy
import torch
import numpy as np
from PIL import Image
import logging
from torch.hub import download_url_to_file
from urllib.parse import urlparse
import folder_paths
import comfy.model_management
from sam_hq.predictor import SamPredictorHQ
from sam_hq.build_sam_hq import sam_model_registry
from local_groundingdino.datasets import transforms as T
from local_groundingdino.util.utils import clean_state_dict as local_groundingdino_clean_state_dict
from local_groundingdino.util.slconfig import SLConfig as local_groundingdino_SLConfig
from local_groundingdino.models import build_model as local_groundingdino_build_model
import glob
import folder_paths
logger = logging.getLogger('comfyui_segment_anything')
sam_model_dir_name = "sams"
sam_model_list = {
"sam_vit_h (2.56GB)": {
"model_url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
},
"sam_vit_l (1.25GB)": {
"model_url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth"
},
"sam_vit_b (375MB)": {
"model_url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
},
"sam_hq_vit_h (2.57GB)": {
"model_url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth"
},
"sam_hq_vit_l (1.25GB)": {
"model_url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth"
},
"sam_hq_vit_b (379MB)": {
"model_url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_b.pth"
},
"mobile_sam(39MB)": {
"model_url": "https://github.com/ChaoningZhang/MobileSAM/blob/master/weights/mobile_sam.pt"
}
}
groundingdino_model_dir_name = "grounding-dino"
groundingdino_model_list = {
"GroundingDINO_SwinT_OGC (694MB)": {
"config_url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GroundingDINO_SwinT_OGC.cfg.py",
"model_url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth",
},
"GroundingDINO_SwinB (938MB)": {
"config_url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GroundingDINO_SwinB.cfg.py",
"model_url": "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth"
},
}
def get_bert_base_uncased_model_path():
comfy_bert_model_base = os.path.join(folder_paths.models_dir, 'bert-base-uncased')
if glob.glob(os.path.join(comfy_bert_model_base, '**/model.safetensors'), recursive=True):
print('grounding-dino is using models/bert-base-uncased')
return comfy_bert_model_base
return 'bert-base-uncased'
def list_files(dirpath, extensions=[]):
return [f for f in os.listdir(dirpath) if os.path.isfile(os.path.join(dirpath, f)) and f.split('.')[-1] in extensions]
def list_sam_model():
return list(sam_model_list.keys())
def load_sam_model(model_name):
sam_checkpoint_path = get_local_filepath(
sam_model_list[model_name]["model_url"], sam_model_dir_name)
model_file_name = os.path.basename(sam_checkpoint_path)
model_type = model_file_name.split('.')[0]
if 'hq' not in model_type and 'mobile' not in model_type:
model_type = '_'.join(model_type.split('_')[:-1])
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint_path)
sam_device = comfy.model_management.get_torch_device()
sam.to(device=sam_device)
sam.eval()
sam.model_name = model_file_name
return sam
def get_local_filepath(url, dirname, local_file_name=None):
if not local_file_name:
parsed_url = urlparse(url)
local_file_name = os.path.basename(parsed_url.path)
destination = folder_paths.get_full_path(dirname, local_file_name)
if destination:
logger.warn(f'using extra model: {destination}')
return destination
folder = os.path.join(folder_paths.models_dir, dirname)
if not os.path.exists(folder):
os.makedirs(folder)
destination = os.path.join(folder, local_file_name)
if not os.path.exists(destination):
logger.warn(f'downloading {url} to {destination}')
download_url_to_file(url, destination)
return destination
def load_groundingdino_model(model_name):
dino_model_args = local_groundingdino_SLConfig.fromfile(
get_local_filepath(
groundingdino_model_list[model_name]["config_url"],
groundingdino_model_dir_name
),
)
if dino_model_args.text_encoder_type == 'bert-base-uncased':
dino_model_args.text_encoder_type = get_bert_base_uncased_model_path()
dino = local_groundingdino_build_model(dino_model_args)
checkpoint = torch.load(
get_local_filepath(
groundingdino_model_list[model_name]["model_url"],
groundingdino_model_dir_name,
),
)
dino.load_state_dict(local_groundingdino_clean_state_dict(
checkpoint['model']), strict=False)
device = comfy.model_management.get_torch_device()
dino.to(device=device)
dino.eval()
return dino
def list_groundingdino_model():
return list(groundingdino_model_list.keys())
def groundingdino_predict(
dino_model,
image,
prompt,
threshold
):
def load_dino_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(model, image, caption, box_threshold):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
device = comfy.model_management.get_torch_device()
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"][0] # (nq, 4)
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
return boxes_filt.cpu()
dino_image = load_dino_image(image.convert("RGB"))
boxes_filt = get_grounding_output(
dino_model, dino_image, prompt, threshold
)
H, W = image.size[1], image.size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
return boxes_filt
def create_pil_output(image_np, masks, boxes_filt):
output_masks, output_images = [], []
boxes_filt = boxes_filt.numpy().astype(int) if boxes_filt is not None else None
for mask in masks:
output_masks.append(Image.fromarray(np.any(mask, axis=0)))
image_np_copy = copy.deepcopy(image_np)
image_np_copy[~np.any(mask, axis=0)] = np.array([0, 0, 0, 0])
output_images.append(Image.fromarray(image_np_copy))
return output_images, output_masks
def create_tensor_output(image_np, masks, boxes_filt):
output_masks, output_images = [], []
boxes_filt = boxes_filt.numpy().astype(int) if boxes_filt is not None else None
for mask in masks:
image_np_copy = copy.deepcopy(image_np)
image_np_copy[~np.any(mask, axis=0)] = np.array([0, 0, 0, 0])
output_image, output_mask = split_image_mask(
Image.fromarray(image_np_copy))
output_masks.append(output_mask)
output_images.append(output_image)
return (output_images, output_masks)
def split_image_mask(image):
image_rgb = image.convert("RGB")
image_rgb = np.array(image_rgb).astype(np.float32) / 255.0
image_rgb = torch.from_numpy(image_rgb)[None,]
if 'A' in image.getbands():
mask = np.array(image.getchannel('A')).astype(np.float32) / 255.0
mask = torch.from_numpy(mask)[None,]
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
return (image_rgb, mask)
def sam_segment(
sam_model,
image,
boxes
):
if boxes.shape[0] == 0:
return None
sam_is_hq = False
# TODO: more elegant
if hasattr(sam_model, 'model_name') and 'hq' in sam_model.model_name:
sam_is_hq = True
predictor = SamPredictorHQ(sam_model, sam_is_hq)
image_np = np.array(image)
image_np_rgb = image_np[..., :3]
predictor.set_image(image_np_rgb)
transformed_boxes = predictor.transform.apply_boxes_torch(
boxes, image_np.shape[:2])
sam_device = comfy.model_management.get_torch_device()
masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(sam_device),
multimask_output=False)
masks = masks.permute(1, 0, 2, 3).cpu().numpy()
return create_tensor_output(image_np, masks, boxes)
class SAMModelLoader:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model_name": (list_sam_model(), ),
}
}
CATEGORY = "segment_anything"
FUNCTION = "main"
RETURN_TYPES = ("SAM_MODEL", )
def main(self, model_name):
sam_model = load_sam_model(model_name)
return (sam_model, )
class GroundingDinoModelLoader:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model_name": (list_groundingdino_model(), ),
}
}
CATEGORY = "segment_anything"
FUNCTION = "main"
RETURN_TYPES = ("GROUNDING_DINO_MODEL", )
def main(self, model_name):
dino_model = load_groundingdino_model(model_name)
return (dino_model, )
class GroundingDinoSAMSegment:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"sam_model": ('SAM_MODEL', {}),
"grounding_dino_model": ('GROUNDING_DINO_MODEL', {}),
"image": ('IMAGE', {}),
"prompt": ("STRING", {}),
"threshold": ("FLOAT", {
"default": 0.3,
"min": 0,
"max": 1.0,
"step": 0.01
}),
}
}
CATEGORY = "segment_anything"
FUNCTION = "main"
RETURN_TYPES = ("IMAGE", "MASK")
def main(self, grounding_dino_model, sam_model, image, prompt, threshold):
res_images = []
res_masks = []
for item in image:
item = Image.fromarray(
np.clip(255. * item.cpu().numpy(), 0, 255).astype(np.uint8)).convert('RGBA')
boxes = groundingdino_predict(
grounding_dino_model,
item,
prompt,
threshold
)
if boxes.shape[0] == 0:
break
(images, masks) = sam_segment(
sam_model,
item,
boxes
)
res_images.extend(images)
res_masks.extend(masks)
if len(res_images) == 0:
_, height, width, _ = image.size()
empty_mask = torch.zeros((1, height, width), dtype=torch.uint8, device="cpu")
return (empty_mask, empty_mask)
return (torch.cat(res_images, dim=0), torch.cat(res_masks, dim=0))
class InvertMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
}
}
CATEGORY = "segment_anything"
FUNCTION = "main"
RETURN_TYPES = ("MASK",)
def main(self, mask):
out = 1.0 - mask
return (out,)
class IsMaskEmptyNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
},
}
RETURN_TYPES = ["NUMBER"]
RETURN_NAMES = ["boolean_number"]
FUNCTION = "main"
CATEGORY = "segment_anything"
def main(self, mask):
return (torch.all(mask == 0).int().item(), ) |