File size: 5,014 Bytes
ac6acf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch

class LatentFormat:
    scale_factor = 1.0
    latent_channels = 4
    latent_rgb_factors = None
    taesd_decoder_name = None

    def process_in(self, latent):
        return latent * self.scale_factor

    def process_out(self, latent):
        return latent / self.scale_factor

class SD15(LatentFormat):
    def __init__(self, scale_factor=0.18215):
        self.scale_factor = scale_factor
        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3512,  0.2297,  0.3227],
                    [ 0.3250,  0.4974,  0.2350],
                    [-0.2829,  0.1762,  0.2721],
                    [-0.2120, -0.2616, -0.7177]
                ]
        self.taesd_decoder_name = "taesd_decoder"

class SDXL(LatentFormat):
    scale_factor = 0.13025

    def __init__(self):
        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3920,  0.4054,  0.4549],
                    [-0.2634, -0.0196,  0.0653],
                    [ 0.0568,  0.1687, -0.0755],
                    [-0.3112, -0.2359, -0.2076]
                ]
        self.taesd_decoder_name = "taesdxl_decoder"

class SDXL_Playground_2_5(LatentFormat):
    def __init__(self):
        self.scale_factor = 0.5
        self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
        self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)

        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3920,  0.4054,  0.4549],
                    [-0.2634, -0.0196,  0.0653],
                    [ 0.0568,  0.1687, -0.0755],
                    [-0.3112, -0.2359, -0.2076]
                ]
        self.taesd_decoder_name = "taesdxl_decoder"

    def process_in(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return (latent - latents_mean) * self.scale_factor / latents_std

    def process_out(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return latent * latents_std / self.scale_factor + latents_mean


class SD_X4(LatentFormat):
    def __init__(self):
        self.scale_factor = 0.08333
        self.latent_rgb_factors = [
            [-0.2340, -0.3863, -0.3257],
            [ 0.0994,  0.0885, -0.0908],
            [-0.2833, -0.2349, -0.3741],
            [ 0.2523, -0.0055, -0.1651]
        ]

class SC_Prior(LatentFormat):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 1.0
        self.latent_rgb_factors = [
            [-0.0326, -0.0204, -0.0127],
            [-0.1592, -0.0427,  0.0216],
            [ 0.0873,  0.0638, -0.0020],
            [-0.0602,  0.0442,  0.1304],
            [ 0.0800, -0.0313, -0.1796],
            [-0.0810, -0.0638, -0.1581],
            [ 0.1791,  0.1180,  0.0967],
            [ 0.0740,  0.1416,  0.0432],
            [-0.1745, -0.1888, -0.1373],
            [ 0.2412,  0.1577,  0.0928],
            [ 0.1908,  0.0998,  0.0682],
            [ 0.0209,  0.0365, -0.0092],
            [ 0.0448, -0.0650, -0.1728],
            [-0.1658, -0.1045, -0.1308],
            [ 0.0542,  0.1545,  0.1325],
            [-0.0352, -0.1672, -0.2541]
        ]

class SC_B(LatentFormat):
    def __init__(self):
        self.scale_factor = 1.0 / 0.43
        self.latent_rgb_factors = [
            [ 0.1121,  0.2006,  0.1023],
            [-0.2093, -0.0222, -0.0195],
            [-0.3087, -0.1535,  0.0366],
            [ 0.0290, -0.1574, -0.4078]
        ]

class SD3(LatentFormat):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 1.5305
        self.shift_factor = 0.0609
        self.latent_rgb_factors = [
            [-0.0645,  0.0177,  0.1052],
            [ 0.0028,  0.0312,  0.0650],
            [ 0.1848,  0.0762,  0.0360],
            [ 0.0944,  0.0360,  0.0889],
            [ 0.0897,  0.0506, -0.0364],
            [-0.0020,  0.1203,  0.0284],
            [ 0.0855,  0.0118,  0.0283],
            [-0.0539,  0.0658,  0.1047],
            [-0.0057,  0.0116,  0.0700],
            [-0.0412,  0.0281, -0.0039],
            [ 0.1106,  0.1171,  0.1220],
            [-0.0248,  0.0682, -0.0481],
            [ 0.0815,  0.0846,  0.1207],
            [-0.0120, -0.0055, -0.0867],
            [-0.0749, -0.0634, -0.0456],
            [-0.1418, -0.1457, -0.1259]
        ]
        self.taesd_decoder_name = "taesd3_decoder"

    def process_in(self, latent):
        return (latent - self.shift_factor) * self.scale_factor

    def process_out(self, latent):
        return (latent / self.scale_factor) + self.shift_factor

class StableAudio1(LatentFormat):
    latent_channels = 64