Spaces:
Runtime error
Runtime error
File size: 7,413 Bytes
ac6acf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import torchaudio
import torch
import comfy.model_management
import folder_paths
import os
import io
import json
import struct
import random
from comfy.cli_args import args
class EmptyLatentAudio:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
@classmethod
def INPUT_TYPES(s):
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/audio"
def generate(self, seconds):
batch_size = 1
length = round((seconds * 44100 / 2048) / 2) * 2
latent = torch.zeros([batch_size, 64, length], device=self.device)
return ({"samples":latent, "type": "audio"}, )
class VAEEncodeAudio:
@classmethod
def INPUT_TYPES(s):
return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/audio"
def encode(self, vae, audio):
sample_rate = audio["sample_rate"]
if 44100 != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
else:
waveform = audio["waveform"]
t = vae.encode(waveform.movedim(1, -1))
return ({"samples":t}, )
class VAEDecodeAudio:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
RETURN_TYPES = ("AUDIO",)
FUNCTION = "decode"
CATEGORY = "latent/audio"
def decode(self, vae, samples):
audio = vae.decode(samples["samples"]).movedim(-1, 1)
return ({"waveform": audio, "sample_rate": 44100}, )
def create_vorbis_comment_block(comment_dict, last_block):
vendor_string = b'ComfyUI'
vendor_length = len(vendor_string)
comments = []
for key, value in comment_dict.items():
comment = f"{key}={value}".encode('utf-8')
comments.append(struct.pack('<I', len(comment)) + comment)
user_comment_list_length = len(comments)
user_comments = b''.join(comments)
comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments
if last_block:
id = b'\x84'
else:
id = b'\x04'
comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data
return comment_block
def insert_or_replace_vorbis_comment(flac_io, comment_dict):
if len(comment_dict) == 0:
return flac_io
flac_io.seek(4)
blocks = []
last_block = False
while not last_block:
header = flac_io.read(4)
last_block = (header[0] & 0x80) != 0
block_type = header[0] & 0x7F
block_length = struct.unpack('>I', b'\x00' + header[1:])[0]
block_data = flac_io.read(block_length)
if block_type == 4 or block_type == 1:
pass
else:
header = bytes([(header[0] & (~0x80))]) + header[1:]
blocks.append(header + block_data)
blocks.append(create_vorbis_comment_block(comment_dict, last_block=True))
new_flac_io = io.BytesIO()
new_flac_io.write(b'fLaC')
for block in blocks:
new_flac_io.write(block)
new_flac_io.write(flac_io.read())
return new_flac_io
class SaveAudio:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(s):
return {"required": { "audio": ("AUDIO", ),
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_audio"
OUTPUT_NODE = True
CATEGORY = "audio"
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results = list()
metadata = {}
if not args.disable_metadata:
if prompt is not None:
metadata["prompt"] = json.dumps(prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.flac"
buff = io.BytesIO()
torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC")
buff = insert_or_replace_vorbis_comment(buff, metadata)
with open(os.path.join(full_output_folder, file), 'wb') as f:
f.write(buff.getbuffer())
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "audio": results } }
class PreviewAudio(SaveAudio):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
@classmethod
def INPUT_TYPES(s):
return {"required":
{"audio": ("AUDIO", ), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
class LoadAudio:
SUPPORTED_FORMATS = ('.wav', '.mp3', '.ogg', '.flac', '.aiff', '.aif')
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [
f for f in os.listdir(input_dir)
if (os.path.isfile(os.path.join(input_dir, f))
and f.endswith(LoadAudio.SUPPORTED_FORMATS)
)
]
return {"required": {"audio": (sorted(files), {"audio_upload": True})}}
CATEGORY = "audio"
RETURN_TYPES = ("AUDIO", )
FUNCTION = "load"
def load(self, audio):
audio_path = folder_paths.get_annotated_filepath(audio)
waveform, sample_rate = torchaudio.load(audio_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
return (audio, )
@classmethod
def IS_CHANGED(s, audio):
image_path = folder_paths.get_annotated_filepath(audio)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, audio):
if not folder_paths.exists_annotated_filepath(audio):
return "Invalid audio file: {}".format(audio)
return True
NODE_CLASS_MAPPINGS = {
"EmptyLatentAudio": EmptyLatentAudio,
"VAEEncodeAudio": VAEEncodeAudio,
"VAEDecodeAudio": VAEDecodeAudio,
"SaveAudio": SaveAudio,
"LoadAudio": LoadAudio,
"PreviewAudio": PreviewAudio,
}
|