Spaces:
Runtime error
Runtime error
File size: 24,499 Bytes
b33b762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# ComfyUI's ControlNet Auxiliary Preprocessors
![](./examples/example_mesh_graphormer.png)
Plug-and-play [ComfyUI](https://github.com/comfyanonymous/ComfyUI) node sets for making [ControlNet](https://github.com/lllyasviel/ControlNet/) hint images
The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to [the 🤗 Hub](https://huggingface.co/lllyasviel/Annotators).
All credit & copyright goes to https://github.com/lllyasviel.
# Marigold
Check out Marigold Depth Estimator which can generate very detailed and sharp depth map from high-resolution still images. The mesh created by it is even 3D-printable. Due to diffusers, it can't be implemented in this extension but there is an Comfy implementation by Kijai
https://github.com/kijai/ComfyUI-Marigold
![](./examples/example_marigold_flat.jpg)
![](./examples/example_marigold.png)
# Updates
Go to [Update page](./UPDATES.md) to follow updates
# Installation:
## Using ComfyUI Manager (recommended):
Install [ComfyUI Manager](https://github.com/ltdrdata/ComfyUI-Manager) and do steps introduced there to install this repo.
## Alternative:
If you're running on Linux, or non-admin account on windows you'll want to ensure `/ComfyUI/custom_nodes` and `comfyui_controlnet_aux` has write permissions.
There is now a **install.bat** you can run to install to portable if detected. Otherwise it will default to system and assume you followed ConfyUI's manual installation steps.
If you can't run **install.bat** (e.g. you are a Linux user). Open the CMD/Shell and do the following:
- Navigate to your `/ComfyUI/custom_nodes/` folder
- Run `git clone https://github.com/Fannovel16/comfyui_controlnet_aux/`
- Navigate to your `comfyui_controlnet_aux` folder
- Portable/venv:
- Run `path/to/ComfUI/python_embeded/python.exe -s -m pip install -r requirements.txt`
- With system python
- Run `pip install -r requirements.txt`
- Start ComfyUI
# Nodes
Please note that this repo only supports preprocessors making hint images (e.g. stickman, canny edge, etc).
All preprocessors except Inpaint are intergrated into `AIO Aux Preprocessor` node.
This node allow you to quickly get the preprocessor but a preprocessor's own threshold parameters won't be able to set.
You need to use its node directly to set thresholds.
# Nodes (sections are categories in Comfy menu)
## Line Extractors
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|-----------------------------|---------------------------|-------------------------------------------|
| Binary Lines | binary | control_scribble |
| Canny Edge | canny | control_v11p_sd15_canny <br> control_canny <br> t2iadapter_canny |
| HED Soft-Edge Lines | hed | control_v11p_sd15_softedge <br> control_hed |
| Standard Lineart | standard_lineart | control_v11p_sd15_lineart |
| Realistic Lineart | lineart (or `lineart_coarse` if `coarse` is enabled) | control_v11p_sd15_lineart |
| Anime Lineart | lineart_anime | control_v11p_sd15s2_lineart_anime |
| Manga Lineart | lineart_anime_denoise | control_v11p_sd15s2_lineart_anime |
| M-LSD Lines | mlsd | control_v11p_sd15_mlsd <br> control_mlsd |
| PiDiNet Soft-Edge Lines | pidinet | control_v11p_sd15_softedge <br> control_scribble |
| Scribble Lines | scribble | control_v11p_sd15_scribble <br> control_scribble |
| Scribble XDoG Lines | scribble_xdog | control_v11p_sd15_scribble <br> control_scribble |
| Fake Scribble Lines | scribble_hed | control_v11p_sd15_scribble <br> control_scribble |
| TEED Soft-Edge Lines | teed | [controlnet-sd-xl-1.0-softedge-dexined](https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-softedge-dexined/blob/main/controlnet-sd-xl-1.0-softedge-dexined.safetensors) <br> control_v11p_sd15_softedge (Theoretically)
| Scribble PiDiNet Lines | scribble_pidinet | control_v11p_sd15_scribble <br> control_scribble |
| AnyLine Lineart | | mistoLine_fp16.safetensors <br> mistoLine_rank256 <br> control_v11p_sd15s2_lineart_anime <br> control_v11p_sd15_lineart |
## Normal and Depth Estimators
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|-----------------------------|---------------------------|-------------------------------------------|
| MiDaS Depth Map | (normal) depth | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
| LeReS Depth Map | depth_leres | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
| Zoe Depth Map | depth_zoe | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
| MiDaS Normal Map | normal_map | control_normal |
| BAE Normal Map | normal_bae | control_v11p_sd15_normalbae |
| MeshGraphormer Hand Refiner ([HandRefinder](https://github.com/wenquanlu/HandRefiner)) | depth_hand_refiner | [control_sd15_inpaint_depth_hand_fp16](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/control_sd15_inpaint_depth_hand_fp16.safetensors) |
| Depth Anything | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
| Zoe Depth Anything <br> (Basically Zoe but the encoder is replaced with DepthAnything) | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
| Normal DSINE | | control_normal/control_v11p_sd15_normalbae |
| Metric3D Depth | | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
| Metric3D Normal | | control_v11p_sd15_normalbae |
| Depth Anything V2 | | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
## Faces and Poses Estimators
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|-----------------------------|---------------------------|-------------------------------------------|
| DWPose Estimator | dw_openpose_full | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose |
| OpenPose Estimator | openpose (detect_body) <br> openpose_hand (detect_body + detect_hand) <br> openpose_faceonly (detect_face) <br> openpose_full (detect_hand + detect_body + detect_face) | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose |
| MediaPipe Face Mesh | mediapipe_face | controlnet_sd21_laion_face_v2 |
| Animal Estimator | animal_openpose | [control_sd15_animal_openpose_fp16](https://huggingface.co/huchenlei/animal_openpose/blob/main/control_sd15_animal_openpose_fp16.pth) |
## Optical Flow Estimators
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|-----------------------------|---------------------------|-------------------------------------------|
| Unimatch Optical Flow | | [DragNUWA](https://github.com/ProjectNUWA/DragNUWA) |
### How to get OpenPose-format JSON?
#### User-side
This workflow will save images to ComfyUI's output folder (the same location as output images). If you haven't found `Save Pose Keypoints` node, update this extension
![](./examples/example_save_kps.png)
#### Dev-side
An array of [OpenPose-format JSON](https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#json-output-format) corresponsding to each frame in an IMAGE batch can be gotten from DWPose and OpenPose using `app.nodeOutputs` on the UI or `/history` API endpoint. JSON output from AnimalPose uses a kinda similar format to OpenPose JSON:
```
[
{
"version": "ap10k",
"animals": [
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
...
],
"canvas_height": 512,
"canvas_width": 768
},
...
]
```
For extension developers (e.g. Openpose editor):
```js
const poseNodes = app.graph._nodes.filter(node => ["OpenposePreprocessor", "DWPreprocessor", "AnimalPosePreprocessor"].includes(node.type))
for (const poseNode of poseNodes) {
const openposeResults = JSON.parse(app.nodeOutputs[poseNode.id].openpose_json[0])
console.log(openposeResults) //An array containing Openpose JSON for each frame
}
```
For API users:
Javascript
```js
import fetch from "node-fetch" //Remember to add "type": "module" to "package.json"
async function main() {
const promptId = '792c1905-ecfe-41f4-8114-83e6a4a09a9f' //Too lazy to POST /queue
let history = await fetch(`http://127.0.0.1:8188/history/${promptId}`).then(re => re.json())
history = history[promptId]
const nodeOutputs = Object.values(history.outputs).filter(output => output.openpose_json)
for (const nodeOutput of nodeOutputs) {
const openposeResults = JSON.parse(nodeOutput.openpose_json[0])
console.log(openposeResults) //An array containing Openpose JSON for each frame
}
}
main()
```
Python
```py
import json, urllib.request
server_address = "127.0.0.1:8188"
prompt_id = '' #Too lazy to POST /queue
def get_history(prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
return json.loads(response.read())
history = get_history(prompt_id)[prompt_id]
for o in history['outputs']:
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
if 'openpose_json' in node_output:
print(json.loads(node_output['openpose_json'][0])) #An list containing Openpose JSON for each frame
```
## Semantic Segmentation
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|-----------------------------|---------------------------|-------------------------------------------|
| OneFormer ADE20K Segmentor | oneformer_ade20k | control_v11p_sd15_seg |
| OneFormer COCO Segmentor | oneformer_coco | control_v11p_sd15_seg |
| UniFormer Segmentor | segmentation |control_sd15_seg <br> control_v11p_sd15_seg|
## T2IAdapter-only
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|-----------------------------|---------------------------|-------------------------------------------|
| Color Pallete | color | t2iadapter_color |
| Content Shuffle | shuffle | t2iadapter_style |
## Recolor
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|-----------------------------|---------------------------|-------------------------------------------|
| Image Luminance | recolor_luminance | [ioclab_sd15_recolor](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/ioclab_sd15_recolor.safetensors) <br> [sai_xl_recolor_256lora](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/sai_xl_recolor_256lora.safetensors) <br> [bdsqlsz_controlllite_xl_recolor_luminance](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/bdsqlsz_controlllite_xl_recolor_luminance.safetensors) |
| Image Intensity | recolor_intensity | Idk. Maybe same as above? |
# Examples
> A picture is worth a thousand words
Credit to https://huggingface.co/thibaud/controlnet-sd21 for most examples below. You can get the same kind of results from preprocessor nodes of this repo.
## Line Extractors
### Canny Edge
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_canny.png)
### HED Lines
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_hed.png)
### Realistic Lineart
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_lineart.png)
### Scribble/Fake Scribble
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_scribble.png)
### TEED Soft-Edge Lines
![](./examples/example_teed.png)
### Anyline Lineart
![](./examples/example_anyline.png)
## Normal and Depth Map
### Depth (idk the preprocessor they use)
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_depth.png)
## Zoe - Depth Map
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_zoedepth.png)
## BAE - Normal Map
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_normalbae.png)
## MeshGraphormer
![](./examples/example_mesh_graphormer.png)
## Depth Anything & Zoe Depth Anything
![](./examples/example_depth_anything.png)
## DSINE
![](./examples/example_dsine.png)
## Metric3D
![](./examples/example_metric3d.png)
## Depth Anything V2
![](./examples/example_depth_anything_v2.png)
## Faces and Poses
### OpenPose
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openpose.png)
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openposev2.png)
### Animal Pose (AP-10K)
![](./examples/example_animal_pose.png)
### DensePose
![](./examples/example_densepose.png)
## Semantic Segmantation
### OneFormer ADE20K Segmentor
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_ade20k.png)
### Anime Face Segmentor
![](./examples/example_anime_face_segmentor.png)
## T2IAdapter-only
### Color Pallete for T2I-Adapter
![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_color.png)
## Optical Flow
### Unimatch
![](./examples/example_unimatch.png)
## Recolor
![](./examples/example_recolor.png)
# Testing workflow
https://github.com/Fannovel16/comfyui_controlnet_aux/blob/master/tests/test_cn_aux_full.json
![](https://github.com/Fannovel16/comfyui_controlnet_aux/blob/master/tests/pose.png?raw=true)
# Q&A:
## Why some nodes doesn't appear after I installed this repo?
This repo has a new mechanism which will skip any custom node can't be imported. If you meet this case, please create a issue on [Issues tab](https://github.com/Fannovel16/comfyui_controlnet_aux/issues) with the log from the command line.
## DWPose/AnimalPose only uses CPU so it's so slow. How can I make it use GPU?
There are two ways to speed-up DWPose: using TorchScript checkpoints (.torchscript.pt) checkpoints or ONNXRuntime (.onnx). TorchScript way is little bit slower than ONNXRuntime but doesn't require any additional library and still way way faster than CPU.
A torchscript bbox detector is compatiable with an onnx pose estimator and vice versa.
### TorchScript
Set `bbox_detector` and `pose_estimator` according to this picture. You can try other bbox detector endings with `.torchscript.pt` to reduce bbox detection time if input images are ideal.
![](./examples/example_torchscript.png)
### ONNXRuntime
If onnxruntime is installed successfully and the checkpoint used endings with `.onnx`, it will replace default cv2 backend to take advantage of GPU. Note that if you are using NVidia card, this method currently can only works on CUDA 11.8 (ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) unless you compile onnxruntime yourself.
1. Know your onnxruntime build:
* * NVidia CUDA 11.x or bellow/AMD GPU: `onnxruntime-gpu`
* * NVidia CUDA 12.x: `onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/`
* * DirectML: `onnxruntime-directml`
* * OpenVINO: `onnxruntime-openvino`
Note that if this is your first time using ComfyUI, please test if it can run on your device before doing next steps.
2. Add it into `requirements.txt`
3. Run `install.bat` or pip command mentioned in Installation
![](./examples/example_onnx.png)
# Assets files of preprocessors
* anime_face_segment: [bdsqlsz/qinglong_controlnet-lllite/Annotators/UNet.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/UNet.pth), [anime-seg/isnetis.ckpt](https://huggingface.co/skytnt/anime-seg/blob/main/isnetis.ckpt)
* densepose: [LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r50_fpn_dl.torchscript](https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/blob/main/densepose_r50_fpn_dl.torchscript)
* dwpose:
* * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx)
* * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/dw-ll_ucoco_384_bs5.torchscript.pt), [yzd-v/DWPose/dw-ll_ucoco_384.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/dw-ll_ucoco_384.onnx)
* animal_pose (ap10k):
* * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx)
* * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/rtmpose-m_ap10k_256_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/rtmpose-m_ap10k_256_bs5.torchscript.pt), [hr16/UnJIT-DWPose/rtmpose-m_ap10k_256.onnx](https://huggingface.co/hr16/UnJIT-DWPose/blob/main/rtmpose-m_ap10k_256.onnx)
* hed: [lllyasviel/Annotators/ControlNetHED.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/ControlNetHED.pth)
* leres: [lllyasviel/Annotators/res101.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/res101.pth), [lllyasviel/Annotators/latest_net_G.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/latest_net_G.pth)
* lineart: [lllyasviel/Annotators/sk_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model.pth), [lllyasviel/Annotators/sk_model2.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model2.pth)
* lineart_anime: [lllyasviel/Annotators/netG.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/netG.pth)
* manga_line: [lllyasviel/Annotators/erika.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/erika.pth)
* mesh_graphormer: [hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/graphormer_hand_state_dict.bin), [hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/hrnetv2_w64_imagenet_pretrained.pth)
* midas: [lllyasviel/Annotators/dpt_hybrid-midas-501f0c75.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/dpt_hybrid-midas-501f0c75.pt)
* mlsd: [lllyasviel/Annotators/mlsd_large_512_fp32.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/mlsd_large_512_fp32.pth)
* normalbae: [lllyasviel/Annotators/scannet.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/scannet.pt)
* oneformer: [lllyasviel/Annotators/250_16_swin_l_oneformer_ade20k_160k.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/250_16_swin_l_oneformer_ade20k_160k.pth)
* open_pose: [lllyasviel/Annotators/body_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/body_pose_model.pth), [lllyasviel/Annotators/hand_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/hand_pose_model.pth), [lllyasviel/Annotators/facenet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/facenet.pth)
* pidi: [lllyasviel/Annotators/table5_pidinet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/table5_pidinet.pth)
* sam: [dhkim2810/MobileSAM/mobile_sam.pt](https://huggingface.co/dhkim2810/MobileSAM/blob/main/mobile_sam.pt)
* uniformer: [lllyasviel/Annotators/upernet_global_small.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/upernet_global_small.pth)
* zoe: [lllyasviel/Annotators/ZoeD_M12_N.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/ZoeD_M12_N.pt)
* teed: [bdsqlsz/qinglong_controlnet-lllite/7_model.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/7_model.pth)
* depth_anything: Either [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitl14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitb14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitb14.pth) or [LiheYoung/Depth-Anything/checkpoints/depth_anything_vits14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vits14.pth)
* diffusion_edge: Either [hr16/Diffusion-Edge/diffusion_edge_indoor.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_indoor.pt), [hr16/Diffusion-Edge/diffusion_edge_urban.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_urban.pt) or [hr16/Diffusion-Edge/diffusion_edge_natrual.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_natrual.pt)
* unimatch: Either [hr16/Unimatch/gmflow-scale2-regrefine6-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-regrefine6-mixdata.pth), [hr16/Unimatch/gmflow-scale2-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-mixdata.pth) or [hr16/Unimatch/gmflow-scale1-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale1-mixdata.pth)
* zoe_depth_anything: Either [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt) or [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt)
# 1500 Stars 😄
<a href="https://star-history.com/#Fannovel16/comfyui_controlnet_aux&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" />
</picture>
</a>
Thanks for yalls supports. I never thought the graph for stars would be linear lol.
|