Spaces:
Runtime error
Runtime error
File size: 9,928 Bytes
b33b762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
from .log import log
from .utils import ResizeMode, safe_numpy
import numpy as np
import torch
import cv2
from .utils import get_unique_axis0
from .lvminthin import nake_nms, lvmin_thin
MAX_IMAGEGEN_RESOLUTION = 8192 #https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L42
RESIZE_MODES = [ResizeMode.RESIZE.value, ResizeMode.INNER_FIT.value, ResizeMode.OUTER_FIT.value]
#Port from https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/internal_controlnet/external_code.py#L89
class PixelPerfectResolution:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_image": ("IMAGE", ),
"image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
"image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
#https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
}
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("RESOLUTION (INT)", )
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors"
def execute(self, original_image, image_gen_width, image_gen_height, resize_mode):
_, raw_H, raw_W, _ = original_image.shape
k0 = float(image_gen_height) / float(raw_H)
k1 = float(image_gen_width) / float(raw_W)
if resize_mode == ResizeMode.OUTER_FIT.value:
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else:
estimation = max(k0, k1) * float(min(raw_H, raw_W))
log.debug(f"Pixel Perfect Computation:")
log.debug(f"resize_mode = {resize_mode}")
log.debug(f"raw_H = {raw_H}")
log.debug(f"raw_W = {raw_W}")
log.debug(f"target_H = {image_gen_height}")
log.debug(f"target_W = {image_gen_width}")
log.debug(f"estimation = {estimation}")
return (int(np.round(estimation)), )
class HintImageEnchance:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"hint_image": ("IMAGE", ),
"image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
"image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
#https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors"
def execute(self, hint_image, image_gen_width, image_gen_height, resize_mode):
outs = []
for single_hint_image in hint_image:
np_hint_image = np.asarray(single_hint_image * 255., dtype=np.uint8)
if resize_mode == ResizeMode.RESIZE.value:
np_hint_image = self.execute_resize(np_hint_image, image_gen_width, image_gen_height)
elif resize_mode == ResizeMode.OUTER_FIT.value:
np_hint_image = self.execute_outer_fit(np_hint_image, image_gen_width, image_gen_height)
else:
np_hint_image = self.execute_inner_fit(np_hint_image, image_gen_width, image_gen_height)
outs.append(torch.from_numpy(np_hint_image.astype(np.float32) / 255.0))
return (torch.stack(outs, dim=0),)
def execute_resize(self, detected_map, w, h):
detected_map = self.high_quality_resize(detected_map, (w, h))
detected_map = safe_numpy(detected_map)
return detected_map
def execute_outer_fit(self, detected_map, w, h):
old_h, old_w, _ = detected_map.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
k = min(k0, k1)
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
detected_map = high_quality_background
detected_map = safe_numpy(detected_map)
return detected_map
def execute_inner_fit(self, detected_map, w, h):
old_h, old_w, _ = detected_map.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
k = max(k0, k1)
detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
detected_map = safe_numpy(detected_map)
return detected_map
def high_quality_resize(self, x, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
if x.shape[0] != size[1] or x.shape[1] != size[0]:
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
else:
y = x
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
class ImageGenResolutionFromLatent:
@classmethod
def INPUT_TYPES(s):
return {
"required": { "latent": ("LATENT", ) }
}
RETURN_TYPES = ("INT", "INT")
RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors"
def execute(self, latent):
_, _, H, W = latent["samples"].shape
return (W * 8, H * 8)
class ImageGenResolutionFromImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": { "image": ("IMAGE", ) }
}
RETURN_TYPES = ("INT", "INT")
RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors"
def execute(self, image):
_, H, W, _ = image.shape
return (W, H)
NODE_CLASS_MAPPINGS = {
"PixelPerfectResolution": PixelPerfectResolution,
"ImageGenResolutionFromImage": ImageGenResolutionFromImage,
"ImageGenResolutionFromLatent": ImageGenResolutionFromLatent,
"HintImageEnchance": HintImageEnchance
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PixelPerfectResolution": "Pixel Perfect Resolution",
"ImageGenResolutionFromImage": "Generation Resolution From Image",
"ImageGenResolutionFromLatent": "Generation Resolution From Latent",
"HintImageEnchance": "Enchance And Resize Hint Images"
} |