File size: 1,752 Bytes
b33b762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from ..utils import common_annotator_call, create_node_input_types
import comfy.model_management as model_management

class HED_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return create_node_input_types(
            safe=(["enable", "disable"], {"default": "enable"})
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors/Line Extractors"

    def execute(self, image, resolution=512, **kwargs):
        from controlnet_aux.hed import HEDdetector

        model = HEDdetector.from_pretrained().to(model_management.get_torch_device())
        out = common_annotator_call(model, image, resolution=resolution, safe = kwargs["safe"] == "enable")
        del model
        return (out, )

class Fake_Scribble_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return create_node_input_types(
            safe=(["enable", "disable"], {"default": "enable"})
        )

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors/Line Extractors"

    def execute(self, image, resolution=512, **kwargs):
        from controlnet_aux.hed import HEDdetector
        
        model = HEDdetector.from_pretrained().to(model_management.get_torch_device())
        out = common_annotator_call(model, image, resolution=resolution, scribble=True, safe=kwargs["safe"]=="enable")
        del model
        return (out, )

NODE_CLASS_MAPPINGS = {
    "HEDPreprocessor": HED_Preprocessor,
    "FakeScribblePreprocessor": Fake_Scribble_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "HEDPreprocessor": "HED Soft-Edge Lines",
    "FakeScribblePreprocessor": "Fake Scribble Lines (aka scribble_hed)"
}