File size: 10,996 Bytes
ac6acf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import folder_paths
import comfy.sd
import comfy.model_sampling
import comfy.latent_formats
import torch

class LCM(comfy.model_sampling.EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        x0 = model_input - model_output * sigma

        sigma_data = 0.5
        scaled_timestep = timestep * 10.0 #timestep_scaling

        c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
        c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5

        return c_out * x0 + c_skip * model_input

class X0(comfy.model_sampling.EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        return model_output

class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete):
    original_timesteps = 50

    def __init__(self, model_config=None):
        super().__init__(model_config)

        self.skip_steps = self.num_timesteps // self.original_timesteps

        sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
        for x in range(self.original_timesteps):
            sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps]

        self.set_sigmas(sigmas_valid)

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
        return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)

    def sigma(self, timestep):
        t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
        return log_sigma.exp().to(timestep.device)


def rescale_zero_terminal_snr_sigmas(sigmas):
    alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= (alphas_bar_sqrt_T)

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas_bar[-1] = 4.8973451890853435e-08
    return ((1 - alphas_bar) / alphas_bar) ** 0.5

class ModelSamplingDiscrete:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "sampling": (["eps", "v_prediction", "lcm", "x0"],),
                              "zsnr": ("BOOLEAN", {"default": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, zsnr):
        m = model.clone()

        sampling_base = comfy.model_sampling.ModelSamplingDiscrete
        if sampling == "eps":
            sampling_type = comfy.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION
        elif sampling == "lcm":
            sampling_type = LCM
            sampling_base = ModelSamplingDiscreteDistilled
        elif sampling == "x0":
            sampling_type = X0

        class ModelSamplingAdvanced(sampling_base, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced(model.model.model_config)
        if zsnr:
            model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))

        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

class ModelSamplingStableCascade:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "shift": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step":0.01}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, shift):
        m = model.clone()

        sampling_base = comfy.model_sampling.StableCascadeSampling
        sampling_type = comfy.model_sampling.EPS

        class ModelSamplingAdvanced(sampling_base, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced(model.model.model_config)
        model_sampling.set_parameters(shift)
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

class ModelSamplingSD3:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, shift, multiplier=1000):
        m = model.clone()

        sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
        sampling_type = comfy.model_sampling.CONST

        class ModelSamplingAdvanced(sampling_base, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced(model.model.model_config)
        model_sampling.set_parameters(shift=shift, multiplier=multiplier)
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

class ModelSamplingAuraFlow(ModelSamplingSD3):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "shift": ("FLOAT", {"default": 1.73, "min": 0.0, "max": 100.0, "step":0.01}),
                              }}

    FUNCTION = "patch_aura"

    def patch_aura(self, model, shift):
        return self.patch(model, shift, multiplier=1.0)

class ModelSamplingContinuousEDM:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "sampling": (["v_prediction", "edm_playground_v2.5", "eps"],),
                              "sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              "sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, sigma_max, sigma_min):
        m = model.clone()

        latent_format = None
        sigma_data = 1.0
        if sampling == "eps":
            sampling_type = comfy.model_sampling.EPS
        elif sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION
        elif sampling == "edm_playground_v2.5":
            sampling_type = comfy.model_sampling.EDM
            sigma_data = 0.5
            latent_format = comfy.latent_formats.SDXL_Playground_2_5()

        class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced(model.model.model_config)
        model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
        m.add_object_patch("model_sampling", model_sampling)
        if latent_format is not None:
            m.add_object_patch("latent_format", latent_format)
        return (m, )

class ModelSamplingContinuousV:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "sampling": (["v_prediction"],),
                              "sigma_max": ("FLOAT", {"default": 500.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              "sigma_min": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, sampling, sigma_max, sigma_min):
        m = model.clone()

        latent_format = None
        sigma_data = 1.0
        if sampling == "v_prediction":
            sampling_type = comfy.model_sampling.V_PREDICTION

        class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousV, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced(model.model.model_config)
        model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
        m.add_object_patch("model_sampling", model_sampling)
        return (m, )

class RescaleCFG:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "advanced/model"

    def patch(self, model, multiplier):
        def rescale_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            sigma = args["sigma"]
            sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
            x_orig = args["input"]

            #rescale cfg has to be done on v-pred model output
            x = x_orig / (sigma * sigma + 1.0)
            cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
            uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)

            #rescalecfg
            x_cfg = uncond + cond_scale * (cond - uncond)
            ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
            ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)

            x_rescaled = x_cfg * (ro_pos / ro_cfg)
            x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

            return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)

        m = model.clone()
        m.set_model_sampler_cfg_function(rescale_cfg)
        return (m, )

NODE_CLASS_MAPPINGS = {
    "ModelSamplingDiscrete": ModelSamplingDiscrete,
    "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
    "ModelSamplingContinuousV": ModelSamplingContinuousV,
    "ModelSamplingStableCascade": ModelSamplingStableCascade,
    "ModelSamplingSD3": ModelSamplingSD3,
    "ModelSamplingAuraFlow": ModelSamplingAuraFlow,
    "RescaleCFG": RescaleCFG,
}