File size: 4,699 Bytes
ac6acf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#This is an example that uses the websockets api to know when a prompt execution is done
#Once the prompt execution is done it downloads the images using the /history endpoint

import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import json
import urllib.request
import urllib.parse

server_address = "127.0.0.1:8188"
client_id = str(uuid.uuid4())

def queue_prompt(prompt):
    p = {"prompt": prompt, "client_id": client_id}
    data = json.dumps(p).encode('utf-8')
    req =  urllib.request.Request("http://{}/prompt".format(server_address), data=data)
    return json.loads(urllib.request.urlopen(req).read())

def get_image(filename, subfolder, folder_type):
    data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
    url_values = urllib.parse.urlencode(data)
    with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
        return response.read()

def get_history(prompt_id):
    with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
        return json.loads(response.read())

def get_images(ws, prompt):
    prompt_id = queue_prompt(prompt)['prompt_id']
    output_images = {}
    while True:
        out = ws.recv()
        if isinstance(out, str):
            message = json.loads(out)
            if message['type'] == 'executing':
                data = message['data']
                if data['node'] is None and data['prompt_id'] == prompt_id:
                    break #Execution is done
        else:
            continue #previews are binary data

    history = get_history(prompt_id)[prompt_id]
    for o in history['outputs']:
        for node_id in history['outputs']:
            node_output = history['outputs'][node_id]
            if 'images' in node_output:
                images_output = []
                for image in node_output['images']:
                    image_data = get_image(image['filename'], image['subfolder'], image['type'])
                    images_output.append(image_data)
            output_images[node_id] = images_output

    return output_images

prompt_text = """

{

    "3": {

        "class_type": "KSampler",

        "inputs": {

            "cfg": 8,

            "denoise": 1,

            "latent_image": [

                "5",

                0

            ],

            "model": [

                "4",

                0

            ],

            "negative": [

                "7",

                0

            ],

            "positive": [

                "6",

                0

            ],

            "sampler_name": "euler",

            "scheduler": "normal",

            "seed": 8566257,

            "steps": 20

        }

    },

    "4": {

        "class_type": "CheckpointLoaderSimple",

        "inputs": {

            "ckpt_name": "v1-5-pruned-emaonly.ckpt"

        }

    },

    "5": {

        "class_type": "EmptyLatentImage",

        "inputs": {

            "batch_size": 1,

            "height": 512,

            "width": 512

        }

    },

    "6": {

        "class_type": "CLIPTextEncode",

        "inputs": {

            "clip": [

                "4",

                1

            ],

            "text": "masterpiece best quality girl"

        }

    },

    "7": {

        "class_type": "CLIPTextEncode",

        "inputs": {

            "clip": [

                "4",

                1

            ],

            "text": "bad hands"

        }

    },

    "8": {

        "class_type": "VAEDecode",

        "inputs": {

            "samples": [

                "3",

                0

            ],

            "vae": [

                "4",

                2

            ]

        }

    },

    "9": {

        "class_type": "SaveImage",

        "inputs": {

            "filename_prefix": "ComfyUI",

            "images": [

                "8",

                0

            ]

        }

    }

}

"""

prompt = json.loads(prompt_text)
#set the text prompt for our positive CLIPTextEncode
prompt["6"]["inputs"]["text"] = "masterpiece best quality man"

#set the seed for our KSampler node
prompt["3"]["inputs"]["seed"] = 5

ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
images = get_images(ws, prompt)

#Commented out code to display the output images:

# for node_id in images:
#     for image_data in images[node_id]:
#         from PIL import Image
#         import io
#         image = Image.open(io.BytesIO(image_data))
#         image.show()