Freak-ppa's picture
Upload 1452 files
b33b762 verified
raw
history blame
24.9 kB
import torch
import os
import comfy.utils
import folder_paths
import numpy as np
import math
import cv2
import PIL.Image
from .resampler import Resampler
from .CrossAttentionPatch import Attn2Replace, instantid_attention
from .utils import tensor_to_image
from insightface.app import FaceAnalysis
try:
import torchvision.transforms.v2 as T
except ImportError:
import torchvision.transforms as T
import torch.nn.functional as F
MODELS_DIR = os.path.join(folder_paths.models_dir, "instantid")
if "instantid" not in folder_paths.folder_names_and_paths:
current_paths = [MODELS_DIR]
else:
current_paths, _ = folder_paths.folder_names_and_paths["instantid"]
folder_paths.folder_names_and_paths["instantid"] = (current_paths, folder_paths.supported_pt_extensions)
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
h, w, _ = image_pil.shape
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
class InstantID(torch.nn.Module):
def __init__(self, instantid_model, cross_attention_dim=1280, output_cross_attention_dim=1024, clip_embeddings_dim=512, clip_extra_context_tokens=16):
super().__init__()
self.clip_embeddings_dim = clip_embeddings_dim
self.cross_attention_dim = cross_attention_dim
self.output_cross_attention_dim = output_cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.image_proj_model = self.init_proj()
self.image_proj_model.load_state_dict(instantid_model["image_proj"])
self.ip_layers = To_KV(instantid_model["ip_adapter"])
def init_proj(self):
image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=20,
num_queries=self.clip_extra_context_tokens,
embedding_dim=self.clip_embeddings_dim,
output_dim=self.output_cross_attention_dim,
ff_mult=4
)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, clip_embed, clip_embed_zeroed):
#image_prompt_embeds = clip_embed.clone().detach()
image_prompt_embeds = self.image_proj_model(clip_embed)
#uncond_image_prompt_embeds = clip_embed_zeroed.clone().detach()
uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
return image_prompt_embeds, uncond_image_prompt_embeds
class ImageProjModel(torch.nn.Module):
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class To_KV(torch.nn.Module):
def __init__(self, state_dict):
super().__init__()
self.to_kvs = torch.nn.ModuleDict()
for key, value in state_dict.items():
k = key.replace(".weight", "").replace(".", "_")
self.to_kvs[k] = torch.nn.Linear(value.shape[1], value.shape[0], bias=False)
self.to_kvs[k].weight.data = value
def _set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"].copy()
if "patches_replace" not in to:
to["patches_replace"] = {}
else:
to["patches_replace"] = to["patches_replace"].copy()
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
else:
to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy()
if key not in to["patches_replace"]["attn2"]:
to["patches_replace"]["attn2"][key] = Attn2Replace(instantid_attention, **patch_kwargs)
model.model_options["transformer_options"] = to
else:
to["patches_replace"]["attn2"][key].add(instantid_attention, **patch_kwargs)
class InstantIDModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "instantid_file": (folder_paths.get_filename_list("instantid"), )}}
RETURN_TYPES = ("INSTANTID",)
FUNCTION = "load_model"
CATEGORY = "InstantID"
def load_model(self, instantid_file):
ckpt_path = folder_paths.get_full_path("instantid", instantid_file)
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if ckpt_path.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
model = st_model
model = InstantID(
model,
cross_attention_dim=1280,
output_cross_attention_dim=model["ip_adapter"]["1.to_k_ip.weight"].shape[1],
clip_embeddings_dim=512,
clip_extra_context_tokens=16,
)
return (model,)
def extractFeatures(insightface, image, extract_kps=False):
face_img = tensor_to_image(image)
out = []
insightface.det_model.input_size = (640,640) # reset the detection size
for i in range(face_img.shape[0]):
for size in [(size, size) for size in range(640, 128, -64)]:
insightface.det_model.input_size = size # TODO: hacky but seems to be working
face = insightface.get(face_img[i])
if face:
face = sorted(face, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]
if extract_kps:
out.append(draw_kps(face_img[i], face['kps']))
else:
out.append(torch.from_numpy(face['embedding']).unsqueeze(0))
if 640 not in size:
print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m")
break
if out:
if extract_kps:
out = torch.stack(T.ToTensor()(out), dim=0).permute([0,2,3,1])
else:
out = torch.stack(out, dim=0)
else:
out = None
return out
class InstantIDFaceAnalysis:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM"], ),
},
}
RETURN_TYPES = ("FACEANALYSIS",)
FUNCTION = "load_insight_face"
CATEGORY = "InstantID"
def load_insight_face(self, provider):
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l
model.prepare(ctx_id=0, det_size=(640, 640))
return (model,)
class FaceKeypointsPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"faceanalysis": ("FACEANALYSIS", ),
"image": ("IMAGE", ),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "preprocess_image"
CATEGORY = "InstantID"
def preprocess_image(self, faceanalysis, image):
face_kps = extractFeatures(faceanalysis, image, extract_kps=True)
if face_kps is None:
face_kps = torch.zeros_like(image)
print(f"\033[33mWARNING: no face detected, unable to extract the keypoints!\033[0m")
#raise Exception('Face Keypoints Image: No face detected.')
return (face_kps,)
def add_noise(image, factor):
seed = int(torch.sum(image).item()) % 1000000007
torch.manual_seed(seed)
mask = (torch.rand_like(image) < factor).float()
noise = torch.rand_like(image)
noise = torch.zeros_like(image) * (1-mask) + noise * mask
return factor*noise
class ApplyInstantID:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instantid": ("INSTANTID", ),
"insightface": ("FACEANALYSIS", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"model": ("MODEL", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 5.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
},
"optional": {
"image_kps": ("IMAGE",),
"mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING",)
RETURN_NAMES = ("MODEL", "positive", "negative", )
FUNCTION = "apply_instantid"
CATEGORY = "InstantID"
def apply_instantid(self, instantid, insightface, control_net, image, model, positive, negative, start_at, end_at, weight=.8, ip_weight=None, cn_strength=None, noise=0.35, image_kps=None, mask=None, combine_embeds='average'):
self.dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32
self.device = comfy.model_management.get_torch_device()
ip_weight = weight if ip_weight is None else ip_weight
cn_strength = weight if cn_strength is None else cn_strength
face_embed = extractFeatures(insightface, image)
if face_embed is None:
raise Exception('Reference Image: No face detected.')
# if no keypoints image is provided, use the image itself (only the first one in the batch)
face_kps = extractFeatures(insightface, image_kps if image_kps is not None else image[0].unsqueeze(0), extract_kps=True)
if face_kps is None:
face_kps = torch.zeros_like(image) if image_kps is None else image_kps
print(f"\033[33mWARNING: No face detected in the keypoints image!\033[0m")
clip_embed = face_embed
# InstantID works better with averaged embeds (TODO: needs testing)
if clip_embed.shape[0] > 1:
if combine_embeds == 'average':
clip_embed = torch.mean(clip_embed, dim=0).unsqueeze(0)
elif combine_embeds == 'norm average':
clip_embed = torch.mean(clip_embed / torch.norm(clip_embed, dim=0, keepdim=True), dim=0).unsqueeze(0)
if noise > 0:
seed = int(torch.sum(clip_embed).item()) % 1000000007
torch.manual_seed(seed)
clip_embed_zeroed = noise * torch.rand_like(clip_embed)
#clip_embed_zeroed = add_noise(clip_embed, noise)
else:
clip_embed_zeroed = torch.zeros_like(clip_embed)
# 1: patch the attention
self.instantid = instantid
self.instantid.to(self.device, dtype=self.dtype)
image_prompt_embeds, uncond_image_prompt_embeds = self.instantid.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype))
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype)
work_model = model.clone()
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
if mask is not None:
mask = mask.to(self.device)
patch_kwargs = {
"ipadapter": self.instantid,
"weight": ip_weight,
"cond": image_prompt_embeds,
"uncond": uncond_image_prompt_embeds,
"mask": mask,
"sigma_start": sigma_start,
"sigma_end": sigma_end,
}
number = 0
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
_set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
number += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
_set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
number += 1
for index in range(10):
patch_kwargs["module_key"] = str(number*2+1)
_set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index))
number += 1
# 2: do the ControlNet
if mask is not None and len(mask.shape) < 3:
mask = mask.unsqueeze(0)
cnets = {}
cond_uncond = []
is_cond = True
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
c_net = control_net.copy().set_cond_hint(face_kps.movedim(-1,1), cn_strength, (start_at, end_at))
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device()) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device())
if mask is not None and is_cond:
d['mask'] = mask
d['set_area_to_bounds'] = False
n = [t[0], d]
c.append(n)
cond_uncond.append(c)
is_cond = False
return(work_model, cond_uncond[0], cond_uncond[1], )
class ApplyInstantIDAdvanced(ApplyInstantID):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instantid": ("INSTANTID", ),
"insightface": ("FACEANALYSIS", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"model": ("MODEL", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"ip_weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 3.0, "step": 0.01, }),
"cn_strength": ("FLOAT", {"default": .8, "min": 0.0, "max": 10.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.1, }),
"combine_embeds": (['average', 'norm average', 'concat'], {"default": 'average'}),
},
"optional": {
"image_kps": ("IMAGE",),
"mask": ("MASK",),
}
}
class InstantIDAttentionPatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instantid": ("INSTANTID", ),
"insightface": ("FACEANALYSIS", ),
"image": ("IMAGE", ),
"model": ("MODEL", ),
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 3.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.1, }),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL", "FACE_EMBEDS")
FUNCTION = "patch_attention"
CATEGORY = "InstantID"
def patch_attention(self, instantid, insightface, image, model, weight, start_at, end_at, noise=0.0, mask=None):
self.dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32
self.device = comfy.model_management.get_torch_device()
face_embed = extractFeatures(insightface, image)
if face_embed is None:
raise Exception('Reference Image: No face detected.')
clip_embed = face_embed
# InstantID works better with averaged embeds (TODO: needs testing)
if clip_embed.shape[0] > 1:
clip_embed = torch.mean(clip_embed, dim=0).unsqueeze(0)
if noise > 0:
seed = int(torch.sum(clip_embed).item()) % 1000000007
torch.manual_seed(seed)
clip_embed_zeroed = noise * torch.rand_like(clip_embed)
else:
clip_embed_zeroed = torch.zeros_like(clip_embed)
# 1: patch the attention
self.instantid = instantid
self.instantid.to(self.device, dtype=self.dtype)
image_prompt_embeds, uncond_image_prompt_embeds = self.instantid.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype))
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype)
if weight == 0:
return (model, { "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds } )
work_model = model.clone()
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
if mask is not None:
mask = mask.to(self.device)
patch_kwargs = {
"weight": weight,
"ipadapter": self.instantid,
"cond": image_prompt_embeds,
"uncond": uncond_image_prompt_embeds,
"mask": mask,
"sigma_start": sigma_start,
"sigma_end": sigma_end,
}
number = 0
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
_set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
number += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
_set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
number += 1
for index in range(10):
patch_kwargs["module_key"] = str(number*2+1)
_set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index))
number += 1
return(work_model, { "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds }, )
class ApplyInstantIDControlNet:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_embeds": ("FACE_EMBEDS", ),
"control_net": ("CONTROL_NET", ),
"image_kps": ("IMAGE", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING",)
RETURN_NAMES = ("positive", "negative", )
FUNCTION = "apply_controlnet"
CATEGORY = "InstantID"
def apply_controlnet(self, face_embeds, control_net, image_kps, positive, negative, strength, start_at, end_at, mask=None):
self.device = comfy.model_management.get_torch_device()
if strength == 0:
return (positive, negative)
if mask is not None:
mask = mask.to(self.device)
if mask is not None and len(mask.shape) < 3:
mask = mask.unsqueeze(0)
image_prompt_embeds = face_embeds['cond']
uncond_image_prompt_embeds = face_embeds['uncond']
cnets = {}
cond_uncond = []
control_hint = image_kps.movedim(-1,1)
is_cond = True
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_at, end_at))
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device()) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device())
if mask is not None and is_cond:
d['mask'] = mask
d['set_area_to_bounds'] = False
n = [t[0], d]
c.append(n)
cond_uncond.append(c)
is_cond = False
return(cond_uncond[0], cond_uncond[1])
NODE_CLASS_MAPPINGS = {
"InstantIDModelLoader": InstantIDModelLoader,
"InstantIDFaceAnalysis": InstantIDFaceAnalysis,
"ApplyInstantID": ApplyInstantID,
"ApplyInstantIDAdvanced": ApplyInstantIDAdvanced,
"FaceKeypointsPreprocessor": FaceKeypointsPreprocessor,
"InstantIDAttentionPatch": InstantIDAttentionPatch,
"ApplyInstantIDControlNet": ApplyInstantIDControlNet,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"InstantIDModelLoader": "Load InstantID Model",
"InstantIDFaceAnalysis": "InstantID Face Analysis",
"ApplyInstantID": "Apply InstantID",
"ApplyInstantIDAdvanced": "Apply InstantID Advanced",
"FaceKeypointsPreprocessor": "Face Keypoints Preprocessor",
"InstantIDAttentionPatch": "InstantID Patch Attention",
"ApplyInstantIDControlNet": "InstantID Apply ControlNet",
}