Spaces:
Runtime error
Runtime error
import comfy.sd | |
import comfy.utils | |
import comfy.model_base | |
import comfy.model_management | |
import comfy.model_sampling | |
import torch | |
import folder_paths | |
import json | |
import os | |
from comfy.cli_args import args | |
class ModelMergeSimple: | |
def INPUT_TYPES(s): | |
return {"required": { "model1": ("MODEL",), | |
"model2": ("MODEL",), | |
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "merge" | |
CATEGORY = "advanced/model_merging" | |
def merge(self, model1, model2, ratio): | |
m = model1.clone() | |
kp = model2.get_key_patches("diffusion_model.") | |
for k in kp: | |
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) | |
return (m, ) | |
class ModelSubtract: | |
def INPUT_TYPES(s): | |
return {"required": { "model1": ("MODEL",), | |
"model2": ("MODEL",), | |
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "merge" | |
CATEGORY = "advanced/model_merging" | |
def merge(self, model1, model2, multiplier): | |
m = model1.clone() | |
kp = model2.get_key_patches("diffusion_model.") | |
for k in kp: | |
m.add_patches({k: kp[k]}, - multiplier, multiplier) | |
return (m, ) | |
class ModelAdd: | |
def INPUT_TYPES(s): | |
return {"required": { "model1": ("MODEL",), | |
"model2": ("MODEL",), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "merge" | |
CATEGORY = "advanced/model_merging" | |
def merge(self, model1, model2): | |
m = model1.clone() | |
kp = model2.get_key_patches("diffusion_model.") | |
for k in kp: | |
m.add_patches({k: kp[k]}, 1.0, 1.0) | |
return (m, ) | |
class CLIPMergeSimple: | |
def INPUT_TYPES(s): | |
return {"required": { "clip1": ("CLIP",), | |
"clip2": ("CLIP",), | |
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("CLIP",) | |
FUNCTION = "merge" | |
CATEGORY = "advanced/model_merging" | |
def merge(self, clip1, clip2, ratio): | |
m = clip1.clone() | |
kp = clip2.get_key_patches() | |
for k in kp: | |
if k.endswith(".position_ids") or k.endswith(".logit_scale"): | |
continue | |
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) | |
return (m, ) | |
class CLIPSubtract: | |
def INPUT_TYPES(s): | |
return {"required": { "clip1": ("CLIP",), | |
"clip2": ("CLIP",), | |
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("CLIP",) | |
FUNCTION = "merge" | |
CATEGORY = "advanced/model_merging" | |
def merge(self, clip1, clip2, multiplier): | |
m = clip1.clone() | |
kp = clip2.get_key_patches() | |
for k in kp: | |
if k.endswith(".position_ids") or k.endswith(".logit_scale"): | |
continue | |
m.add_patches({k: kp[k]}, - multiplier, multiplier) | |
return (m, ) | |
class CLIPAdd: | |
def INPUT_TYPES(s): | |
return {"required": { "clip1": ("CLIP",), | |
"clip2": ("CLIP",), | |
}} | |
RETURN_TYPES = ("CLIP",) | |
FUNCTION = "merge" | |
CATEGORY = "advanced/model_merging" | |
def merge(self, clip1, clip2): | |
m = clip1.clone() | |
kp = clip2.get_key_patches() | |
for k in kp: | |
if k.endswith(".position_ids") or k.endswith(".logit_scale"): | |
continue | |
m.add_patches({k: kp[k]}, 1.0, 1.0) | |
return (m, ) | |
class ModelMergeBlocks: | |
def INPUT_TYPES(s): | |
return {"required": { "model1": ("MODEL",), | |
"model2": ("MODEL",), | |
"input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "merge" | |
CATEGORY = "advanced/model_merging" | |
def merge(self, model1, model2, **kwargs): | |
m = model1.clone() | |
kp = model2.get_key_patches("diffusion_model.") | |
default_ratio = next(iter(kwargs.values())) | |
for k in kp: | |
ratio = default_ratio | |
k_unet = k[len("diffusion_model."):] | |
last_arg_size = 0 | |
for arg in kwargs: | |
if k_unet.startswith(arg) and last_arg_size < len(arg): | |
ratio = kwargs[arg] | |
last_arg_size = len(arg) | |
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) | |
return (m, ) | |
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None): | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir) | |
prompt_info = "" | |
if prompt is not None: | |
prompt_info = json.dumps(prompt) | |
metadata = {} | |
enable_modelspec = True | |
if isinstance(model.model, comfy.model_base.SDXL): | |
if isinstance(model.model, comfy.model_base.SDXL_instructpix2pix): | |
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-edit" | |
else: | |
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base" | |
elif isinstance(model.model, comfy.model_base.SDXLRefiner): | |
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner" | |
elif isinstance(model.model, comfy.model_base.SVD_img2vid): | |
metadata["modelspec.architecture"] = "stable-video-diffusion-img2vid-v1" | |
elif isinstance(model.model, comfy.model_base.SD3): | |
metadata["modelspec.architecture"] = "stable-diffusion-v3-medium" #TODO: other SD3 variants | |
else: | |
enable_modelspec = False | |
if enable_modelspec: | |
metadata["modelspec.sai_model_spec"] = "1.0.0" | |
metadata["modelspec.implementation"] = "sgm" | |
metadata["modelspec.title"] = "{} {}".format(filename, counter) | |
#TODO: | |
# "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512", | |
# "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h", | |
# "v2-inpainting" | |
extra_keys = {} | |
model_sampling = model.get_model_object("model_sampling") | |
if isinstance(model_sampling, comfy.model_sampling.ModelSamplingContinuousEDM): | |
if isinstance(model_sampling, comfy.model_sampling.V_PREDICTION): | |
extra_keys["edm_vpred.sigma_max"] = torch.tensor(model_sampling.sigma_max).float() | |
extra_keys["edm_vpred.sigma_min"] = torch.tensor(model_sampling.sigma_min).float() | |
if model.model.model_type == comfy.model_base.ModelType.EPS: | |
metadata["modelspec.predict_key"] = "epsilon" | |
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION: | |
metadata["modelspec.predict_key"] = "v" | |
if not args.disable_metadata: | |
metadata["prompt"] = prompt_info | |
if extra_pnginfo is not None: | |
for x in extra_pnginfo: | |
metadata[x] = json.dumps(extra_pnginfo[x]) | |
output_checkpoint = f"{filename}_{counter:05}_.safetensors" | |
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) | |
comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys) | |
class CheckpointSave: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"clip": ("CLIP",), | |
"vae": ("VAE",), | |
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} | |
RETURN_TYPES = () | |
FUNCTION = "save" | |
OUTPUT_NODE = True | |
CATEGORY = "advanced/model_merging" | |
def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None): | |
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo) | |
return {} | |
class CLIPSave: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
def INPUT_TYPES(s): | |
return {"required": { "clip": ("CLIP",), | |
"filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} | |
RETURN_TYPES = () | |
FUNCTION = "save" | |
OUTPUT_NODE = True | |
CATEGORY = "advanced/model_merging" | |
def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None): | |
prompt_info = "" | |
if prompt is not None: | |
prompt_info = json.dumps(prompt) | |
metadata = {} | |
if not args.disable_metadata: | |
metadata["prompt"] = prompt_info | |
if extra_pnginfo is not None: | |
for x in extra_pnginfo: | |
metadata[x] = json.dumps(extra_pnginfo[x]) | |
comfy.model_management.load_models_gpu([clip.load_model()], force_patch_weights=True) | |
clip_sd = clip.get_sd() | |
for prefix in ["clip_l.", "clip_g.", ""]: | |
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys())) | |
current_clip_sd = {} | |
for x in k: | |
current_clip_sd[x] = clip_sd.pop(x) | |
if len(current_clip_sd) == 0: | |
continue | |
p = prefix[:-1] | |
replace_prefix = {} | |
filename_prefix_ = filename_prefix | |
if len(p) > 0: | |
filename_prefix_ = "{}_{}".format(filename_prefix_, p) | |
replace_prefix[prefix] = "" | |
replace_prefix["transformer."] = "" | |
full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir) | |
output_checkpoint = f"{filename}_{counter:05}_.safetensors" | |
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) | |
current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix) | |
comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata) | |
return {} | |
class VAESave: | |
def __init__(self): | |
self.output_dir = folder_paths.get_output_directory() | |
def INPUT_TYPES(s): | |
return {"required": { "vae": ("VAE",), | |
"filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} | |
RETURN_TYPES = () | |
FUNCTION = "save" | |
OUTPUT_NODE = True | |
CATEGORY = "advanced/model_merging" | |
def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None): | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
prompt_info = "" | |
if prompt is not None: | |
prompt_info = json.dumps(prompt) | |
metadata = {} | |
if not args.disable_metadata: | |
metadata["prompt"] = prompt_info | |
if extra_pnginfo is not None: | |
for x in extra_pnginfo: | |
metadata[x] = json.dumps(extra_pnginfo[x]) | |
output_checkpoint = f"{filename}_{counter:05}_.safetensors" | |
output_checkpoint = os.path.join(full_output_folder, output_checkpoint) | |
comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata) | |
return {} | |
NODE_CLASS_MAPPINGS = { | |
"ModelMergeSimple": ModelMergeSimple, | |
"ModelMergeBlocks": ModelMergeBlocks, | |
"ModelMergeSubtract": ModelSubtract, | |
"ModelMergeAdd": ModelAdd, | |
"CheckpointSave": CheckpointSave, | |
"CLIPMergeSimple": CLIPMergeSimple, | |
"CLIPMergeSubtract": CLIPSubtract, | |
"CLIPMergeAdd": CLIPAdd, | |
"CLIPSave": CLIPSave, | |
"VAESave": VAESave, | |
} | |