Spaces:
Runtime error
Runtime error
import time | |
import torch | |
import torch.nn as nn | |
import torchvision.models._utils as _utils | |
import torchvision.models as models | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def conv_bn(inp, oup, stride = 1, leaky = 0): | |
return nn.Sequential( | |
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), | |
nn.BatchNorm2d(oup), | |
nn.LeakyReLU(negative_slope=leaky, inplace=True) | |
) | |
def conv_bn_no_relu(inp, oup, stride): | |
return nn.Sequential( | |
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), | |
nn.BatchNorm2d(oup), | |
) | |
def conv_bn1X1(inp, oup, stride, leaky=0): | |
return nn.Sequential( | |
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), | |
nn.BatchNorm2d(oup), | |
nn.LeakyReLU(negative_slope=leaky, inplace=True) | |
) | |
def conv_dw(inp, oup, stride, leaky=0.1): | |
return nn.Sequential( | |
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), | |
nn.BatchNorm2d(inp), | |
nn.LeakyReLU(negative_slope= leaky,inplace=True), | |
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), | |
nn.BatchNorm2d(oup), | |
nn.LeakyReLU(negative_slope= leaky,inplace=True), | |
) | |
class SSH(nn.Module): | |
def __init__(self, in_channel, out_channel): | |
super(SSH, self).__init__() | |
assert out_channel % 4 == 0 | |
leaky = 0 | |
if (out_channel <= 64): | |
leaky = 0.1 | |
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel//2, stride=1) | |
self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky) | |
self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1) | |
self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky) | |
self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1) | |
def forward(self, input): | |
conv3X3 = self.conv3X3(input) | |
conv5X5_1 = self.conv5X5_1(input) | |
conv5X5 = self.conv5X5_2(conv5X5_1) | |
conv7X7_2 = self.conv7X7_2(conv5X5_1) | |
conv7X7 = self.conv7x7_3(conv7X7_2) | |
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1) | |
out = F.relu(out) | |
return out | |
class FPN(nn.Module): | |
def __init__(self,in_channels_list,out_channels): | |
super(FPN,self).__init__() | |
leaky = 0 | |
if (out_channels <= 64): | |
leaky = 0.1 | |
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride = 1, leaky = leaky) | |
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride = 1, leaky = leaky) | |
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride = 1, leaky = leaky) | |
self.merge1 = conv_bn(out_channels, out_channels, leaky = leaky) | |
self.merge2 = conv_bn(out_channels, out_channels, leaky = leaky) | |
def forward(self, input): | |
# names = list(input.keys()) | |
input = list(input.values()) | |
output1 = self.output1(input[0]) | |
output2 = self.output2(input[1]) | |
output3 = self.output3(input[2]) | |
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest") | |
output2 = output2 + up3 | |
output2 = self.merge2(output2) | |
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest") | |
output1 = output1 + up2 | |
output1 = self.merge1(output1) | |
out = [output1, output2, output3] | |
return out | |
class MobileNetV1(nn.Module): | |
def __init__(self): | |
super(MobileNetV1, self).__init__() | |
self.stage1 = nn.Sequential( | |
conv_bn(3, 8, 2, leaky = 0.1), # 3 | |
conv_dw(8, 16, 1), # 7 | |
conv_dw(16, 32, 2), # 11 | |
conv_dw(32, 32, 1), # 19 | |
conv_dw(32, 64, 2), # 27 | |
conv_dw(64, 64, 1), # 43 | |
) | |
self.stage2 = nn.Sequential( | |
conv_dw(64, 128, 2), # 43 + 16 = 59 | |
conv_dw(128, 128, 1), # 59 + 32 = 91 | |
conv_dw(128, 128, 1), # 91 + 32 = 123 | |
conv_dw(128, 128, 1), # 123 + 32 = 155 | |
conv_dw(128, 128, 1), # 155 + 32 = 187 | |
conv_dw(128, 128, 1), # 187 + 32 = 219 | |
) | |
self.stage3 = nn.Sequential( | |
conv_dw(128, 256, 2), # 219 +3 2 = 241 | |
conv_dw(256, 256, 1), # 241 + 64 = 301 | |
) | |
self.avg = nn.AdaptiveAvgPool2d((1,1)) | |
self.fc = nn.Linear(256, 1000) | |
def forward(self, x): | |
x = self.stage1(x) | |
x = self.stage2(x) | |
x = self.stage3(x) | |
x = self.avg(x) | |
# x = self.model(x) | |
x = x.view(-1, 256) | |
x = self.fc(x) | |
return x | |