Spaces:
Runtime error
Runtime error
from ..utils import common_annotator_call, create_node_input_types | |
import comfy.model_management as model_management | |
import numpy as np | |
import warnings | |
from controlnet_aux.dwpose import DwposeDetector, AnimalposeDetector | |
import os | |
import json | |
DWPOSE_MODEL_NAME = "yzd-v/DWPose" | |
#Trigger startup caching for onnxruntime | |
GPU_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CoreMLExecutionProvider"] | |
def check_ort_gpu(): | |
try: | |
import onnxruntime as ort | |
for provider in GPU_PROVIDERS: | |
if provider in ort.get_available_providers(): | |
return True | |
return False | |
except: | |
return False | |
if not os.environ.get("DWPOSE_ONNXRT_CHECKED"): | |
if check_ort_gpu(): | |
print("DWPose: Onnxruntime with acceleration providers detected") | |
else: | |
warnings.warn("DWPose: Onnxruntime not found or doesn't come with acceleration providers, switch to OpenCV with CPU device. DWPose might run very slowly") | |
os.environ['AUX_ORT_PROVIDERS'] = '' | |
os.environ["DWPOSE_ONNXRT_CHECKED"] = '1' | |
class DWPose_Preprocessor: | |
def INPUT_TYPES(s): | |
input_types = create_node_input_types( | |
detect_hand=(["enable", "disable"], {"default": "enable"}), | |
detect_body=(["enable", "disable"], {"default": "enable"}), | |
detect_face=(["enable", "disable"], {"default": "enable"}) | |
) | |
input_types["optional"] = { | |
**input_types["optional"], | |
"bbox_detector": ( | |
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"], | |
{"default": "yolox_l.onnx"} | |
), | |
"pose_estimator": (["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"], {"default": "dw-ll_ucoco_384_bs5.torchscript.pt"}) | |
} | |
return input_types | |
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT") | |
FUNCTION = "estimate_pose" | |
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" | |
def estimate_pose(self, image, detect_hand, detect_body, detect_face, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx", **kwargs): | |
if bbox_detector == "yolox_l.onnx": | |
yolo_repo = DWPOSE_MODEL_NAME | |
elif "yolox" in bbox_detector: | |
yolo_repo = "hr16/yolox-onnx" | |
elif "yolo_nas" in bbox_detector: | |
yolo_repo = "hr16/yolo-nas-fp16" | |
else: | |
raise NotImplementedError(f"Download mechanism for {bbox_detector}") | |
if pose_estimator == "dw-ll_ucoco_384.onnx": | |
pose_repo = DWPOSE_MODEL_NAME | |
elif pose_estimator.endswith(".onnx"): | |
pose_repo = "hr16/UnJIT-DWPose" | |
elif pose_estimator.endswith(".torchscript.pt"): | |
pose_repo = "hr16/DWPose-TorchScript-BatchSize5" | |
else: | |
raise NotImplementedError(f"Download mechanism for {pose_estimator}") | |
model = DwposeDetector.from_pretrained( | |
pose_repo, | |
yolo_repo, | |
det_filename=bbox_detector, pose_filename=pose_estimator, | |
torchscript_device=model_management.get_torch_device() | |
) | |
detect_hand = detect_hand == "enable" | |
detect_body = detect_body == "enable" | |
detect_face = detect_face == "enable" | |
self.openpose_dicts = [] | |
def func(image, **kwargs): | |
pose_img, openpose_dict = model(image, **kwargs) | |
self.openpose_dicts.append(openpose_dict) | |
return pose_img | |
out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution) | |
del model | |
return { | |
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, | |
"result": (out, self.openpose_dicts) | |
} | |
class AnimalPose_Preprocessor: | |
def INPUT_TYPES(s): | |
return create_node_input_types( | |
bbox_detector = ( | |
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"], | |
{"default": "yolox_l.torchscript.pt"} | |
), | |
pose_estimator = (["rtmpose-m_ap10k_256_bs5.torchscript.pt", "rtmpose-m_ap10k_256.onnx"], {"default": "rtmpose-m_ap10k_256_bs5.torchscript.pt"}) | |
) | |
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT") | |
FUNCTION = "estimate_pose" | |
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" | |
def estimate_pose(self, image, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="rtmpose-m_ap10k_256.onnx", **kwargs): | |
if bbox_detector == "yolox_l.onnx": | |
yolo_repo = DWPOSE_MODEL_NAME | |
elif "yolox" in bbox_detector: | |
yolo_repo = "hr16/yolox-onnx" | |
elif "yolo_nas" in bbox_detector: | |
yolo_repo = "hr16/yolo-nas-fp16" | |
else: | |
raise NotImplementedError(f"Download mechanism for {bbox_detector}") | |
if pose_estimator == "dw-ll_ucoco_384.onnx": | |
pose_repo = DWPOSE_MODEL_NAME | |
elif pose_estimator.endswith(".onnx"): | |
pose_repo = "hr16/UnJIT-DWPose" | |
elif pose_estimator.endswith(".torchscript.pt"): | |
pose_repo = "hr16/DWPose-TorchScript-BatchSize5" | |
else: | |
raise NotImplementedError(f"Download mechanism for {pose_estimator}") | |
model = AnimalposeDetector.from_pretrained( | |
pose_repo, | |
yolo_repo, | |
det_filename=bbox_detector, pose_filename=pose_estimator, | |
torchscript_device=model_management.get_torch_device() | |
) | |
self.openpose_dicts = [] | |
def func(image, **kwargs): | |
pose_img, openpose_dict = model(image, **kwargs) | |
self.openpose_dicts.append(openpose_dict) | |
return pose_img | |
out = common_annotator_call(func, image, image_and_json=True, resolution=resolution) | |
del model | |
return { | |
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, | |
"result": (out, self.openpose_dicts) | |
} | |
NODE_CLASS_MAPPINGS = { | |
"DWPreprocessor": DWPose_Preprocessor, | |
"AnimalPosePreprocessor": AnimalPose_Preprocessor | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"DWPreprocessor": "DWPose Estimator", | |
"AnimalPosePreprocessor": "AnimalPose Estimator (AP10K)" | |
} |