Freak-ppa's picture
Upload 4 files
eaca618 verified
raw
history blame
2.83 kB
import cv2
import numpy as np
import os
import torch
from PIL import Image
class MergeImagesToTemplate:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"image3": ("IMAGE",),
"image4": ("IMAGE",)
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "merge_images"
CATEGORY = "image"
OUTPUT_NODE = True
def merge_images(self, image1, image2, image3, image4):
current_directory = os.path.dirname(os.path.abspath(__file__))
template = cv2.imread(current_directory+"/template_cross2.png", cv2.IMREAD_UNCHANGED)
scale_top = 0.85
scale_bottom = 1.434
top_1 = (271,9)
top_2 = (831,9)
bottom_1 = (15,474)
bottom_2 = (786,474)
def prepare_image(img):
img = np.clip(255.0 * img.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
return cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
image1 = prepare_image(image1)
image2 = prepare_image(image2)
image3 = prepare_image(image3)
image4 = prepare_image(image4)
img1_resized = cv2.resize(image1, (int(512 * scale_top), int(512 * scale_top)))
img2_resized = cv2.resize(image2, (int(512 * scale_top), int(512 * scale_top)))
img3_resized = cv2.resize(image3, (int(512 * scale_bottom), int(512 * scale_bottom)))
img4_resized = cv2.resize(image4, (int(512 * scale_bottom), int(512 * scale_bottom)))
background = np.zeros((template.shape[0], template.shape[1], 3), dtype=np.uint8)
background[:] = (255, 255, 255)
background[top_1[1]:top_1[1]+img1_resized.shape[0], top_1[0]:top_1[0]+img1_resized.shape[1]] = img1_resized
background[top_2[1]:top_2[1]+img2_resized.shape[0], top_2[0]:top_2[0]+img2_resized.shape[1]] = img2_resized
background[bottom_1[1]:bottom_1[1]+img3_resized.shape[0], bottom_1[0]:bottom_1[0]+img3_resized.shape[1]] = img3_resized
background[bottom_2[1]:bottom_2[1]+img4_resized.shape[0], bottom_2[0]:bottom_2[0]+img4_resized.shape[1]] = img4_resized
alpha_channel = template[:, :, 3] / 255.0
for c in range(0, 3):
background[:, :, c] = background[:, :, c] * (1 - alpha_channel) + template[:, :, c] * alpha_channel
cv2.imwrite(current_directory+'/result3.png', background)
background_rgba = cv2.cvtColor(background, cv2.COLOR_BGR2RGBA)
result = torch.from_numpy(background_rgba.astype(np.float32) / 255.0).unsqueeze(0)
return (result,)
NODE_CLASS_MAPPINGS = {"MergeImagesToTemplate": MergeImagesToTemplate}