from ..utils import common_annotator_call, create_node_input_types import comfy.model_management as model_management class DSINE_Normal_Map_Preprocessor: @classmethod def INPUT_TYPES(s): return create_node_input_types( fov=("FLOAT", {"min": 0.0, "max": 365.0, "step": 0.05, "default": 60.0}), iterations=("INT", {"min": 1, "max": 20, "step": 1, "default": 5}) ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators" def execute(self, image, fov, iterations, resolution=512, **kwargs): from controlnet_aux.dsine import DsineDetector model = DsineDetector.from_pretrained().to(model_management.get_torch_device()) out = common_annotator_call(model, image, fov=fov, iterations=iterations, resolution=resolution) del model return (out,) NODE_CLASS_MAPPINGS = { "DSINE-NormalMapPreprocessor": DSINE_Normal_Map_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "DSINE-NormalMapPreprocessor": "DSINE Normal Map" }