from ..utils import common_annotator_call, create_node_input_types import comfy.model_management as model_management import json class OpenPose_Preprocessor: @classmethod def INPUT_TYPES(s): return create_node_input_types( detect_hand = (["enable", "disable"], {"default": "enable"}), detect_body = (["enable", "disable"], {"default": "enable"}), detect_face = (["enable", "disable"], {"default": "enable"}) ) RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT") FUNCTION = "estimate_pose" CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" def estimate_pose(self, image, detect_hand, detect_body, detect_face, resolution=512, **kwargs): from controlnet_aux.open_pose import OpenposeDetector detect_hand = detect_hand == "enable" detect_body = detect_body == "enable" detect_face = detect_face == "enable" model = OpenposeDetector.from_pretrained().to(model_management.get_torch_device()) self.openpose_dicts = [] def func(image, **kwargs): pose_img, openpose_dict = model(image, **kwargs) self.openpose_dicts.append(openpose_dict) return pose_img out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution) del model return { 'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, "result": (out, self.openpose_dicts) } NODE_CLASS_MAPPINGS = { "OpenposePreprocessor": OpenPose_Preprocessor, } NODE_DISPLAY_NAME_MAPPINGS = { "OpenposePreprocessor": "OpenPose Pose", }