from __future__ import print_function import os import argparse import numpy as np import cv2 from Pytorch_Retinaface.pytorch_retinaface import Pytorch_RetinaFace parser = argparse.ArgumentParser(description='Retinaface') parser.add_argument('-m', '--trained_model', default='./weights/mobilenet0.25_Final.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--network', default='mobile0.25', help='Backbone network mobile0.25 or resnet50') parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference') parser.add_argument('--confidence_threshold', default=0.02, type=float, help='confidence_threshold') parser.add_argument('--top_k', default=5000, type=int, help='top_k') parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold') parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k') parser.add_argument('-s', '--save_image', action="store_true", default=True, help='show detection results') parser.add_argument('--vis_thres', default=0.6, type=float, help='visualization_threshold') args = parser.parse_args() def main(): rf = Pytorch_RetinaFace() current_dir = os.path.dirname(os.path.abspath(__file__)) output_dir = os.path.join(current_dir, "./Pytorch_Retinaface/outputs") image_path = os.path.join(current_dir, "./Pytorch_Retinaface/images/test.webp") if not os.path.exists(image_path): raise FileNotFoundError img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR) img = np.float32(img_raw) dets = rf.detect_faces(img) # Crop and save each detected face cropped_imgs = rf.center_and_crop_rescale(img_raw, dets) for index, cropped_img in enumerate(cropped_imgs[0]): # Save the final image os.makedirs(output_dir, exist_ok=True) cv2.imwrite(os.path.join(output_dir, f"cropped_face_{index}.jpg"), cropped_img) print(f"Saved: cropped_face_{index}.jpg") if __name__ == '__main__': main()