import re import torch import os import folder_paths from comfy.clip_vision import clip_preprocess, Output import comfy.utils import comfy.model_management as model_management try: import torchvision.transforms.v2 as T except ImportError: import torchvision.transforms as T def get_clipvision_file(preset): preset = preset.lower() clipvision_list = folder_paths.get_filename_list("clip_vision") if preset.startswith("vit-g"): pattern = r'(ViT.bigG.14.*39B.b160k|ipadapter.*sdxl|sdxl.*model\.(bin|safetensors))' elif preset.startswith("kolors"): pattern = r'(clip.vit.large.patch14.336\.(bin|safetensors))' else: pattern = r'(ViT.H.14.*s32B.b79K|ipadapter.*sd15|sd1.?5.*model\.(bin|safetensors))' clipvision_file = [e for e in clipvision_list if re.search(pattern, e, re.IGNORECASE)] clipvision_file = folder_paths.get_full_path("clip_vision", clipvision_file[0]) if clipvision_file else None return clipvision_file def get_ipadapter_file(preset, is_sdxl): preset = preset.lower() ipadapter_list = folder_paths.get_filename_list("ipadapter") is_insightface = False lora_pattern = None if preset.startswith("light"): if is_sdxl: raise Exception("light model is not supported for SDXL") pattern = r'sd15.light.v11\.(safetensors|bin)$' # if v11 is not found, try with the old version if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]: pattern = r'sd15.light\.(safetensors|bin)$' elif preset.startswith("standard"): if is_sdxl: pattern = r'ip.adapter.sdxl.vit.h\.(safetensors|bin)$' else: pattern = r'ip.adapter.sd15\.(safetensors|bin)$' elif preset.startswith("vit-g"): if is_sdxl: pattern = r'ip.adapter.sdxl\.(safetensors|bin)$' else: pattern = r'sd15.vit.g\.(safetensors|bin)$' elif preset.startswith("plus ("): if is_sdxl: pattern = r'plus.sdxl.vit.h\.(safetensors|bin)$' else: pattern = r'ip.adapter.plus.sd15\.(safetensors|bin)$' elif preset.startswith("plus face"): if is_sdxl: pattern = r'plus.face.sdxl.vit.h\.(safetensors|bin)$' else: pattern = r'plus.face.sd15\.(safetensors|bin)$' elif preset.startswith("full"): if is_sdxl: raise Exception("full face model is not supported for SDXL") pattern = r'full.face.sd15\.(safetensors|bin)$' elif preset.startswith("faceid portrait ("): if is_sdxl: pattern = r'portrait.sdxl\.(safetensors|bin)$' else: pattern = r'portrait.v11.sd15\.(safetensors|bin)$' # if v11 is not found, try with the old version if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]: pattern = r'portrait.sd15\.(safetensors|bin)$' is_insightface = True elif preset.startswith("faceid portrait unnorm"): if is_sdxl: pattern = r'portrait.sdxl.unnorm\.(safetensors|bin)$' else: raise Exception("portrait unnorm model is not supported for SD1.5") is_insightface = True elif preset == "faceid": if is_sdxl: pattern = r'faceid.sdxl\.(safetensors|bin)$' lora_pattern = r'faceid.sdxl.lora\.safetensors$' else: pattern = r'faceid.sd15\.(safetensors|bin)$' lora_pattern = r'faceid.sd15.lora\.safetensors$' is_insightface = True elif preset.startswith("faceid plus -"): if is_sdxl: raise Exception("faceid plus model is not supported for SDXL") pattern = r'faceid.plus.sd15\.(safetensors|bin)$' lora_pattern = r'faceid.plus.sd15.lora\.safetensors$' is_insightface = True elif preset.startswith("faceid plus v2"): if is_sdxl: pattern = r'faceid.plusv2.sdxl\.(safetensors|bin)$' lora_pattern = r'faceid.plusv2.sdxl.lora\.safetensors$' else: pattern = r'faceid.plusv2.sd15\.(safetensors|bin)$' lora_pattern = r'faceid.plusv2.sd15.lora\.safetensors$' is_insightface = True # Community's models elif preset.startswith("composition"): if is_sdxl: pattern = r'plus.composition.sdxl\.safetensors$' else: pattern = r'plus.composition.sd15\.safetensors$' elif preset.startswith("kolors"): if is_sdxl: pattern = r'(ip_adapter_plus_general|kolors.ip.adapter.plus)\.(safetensors|bin)$' else: raise Exception("Only supported for Kolors model") else: raise Exception(f"invalid type '{preset}'") ipadapter_file = [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)] ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file[0]) if ipadapter_file else None return ipadapter_file, is_insightface, lora_pattern def get_lora_file(pattern): lora_list = folder_paths.get_filename_list("loras") lora_file = [e for e in lora_list if re.search(pattern, e, re.IGNORECASE)] lora_file = folder_paths.get_full_path("loras", lora_file[0]) if lora_file else None return lora_file def ipadapter_model_loader(file): model = comfy.utils.load_torch_file(file, safe_load=True) if file.lower().endswith(".safetensors"): st_model = {"image_proj": {}, "ip_adapter": {}} for key in model.keys(): if key.startswith("image_proj."): st_model["image_proj"][key.replace("image_proj.", "")] = model[key] elif key.startswith("ip_adapter."): st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key] model = st_model del st_model if not "ip_adapter" in model.keys() or not model["ip_adapter"]: raise Exception("invalid IPAdapter model {}".format(file)) if 'plusv2' in file.lower(): model["faceidplusv2"] = True if 'unnorm' in file.lower(): model["portraitunnorm"] = True return model def insightface_loader(provider): try: from insightface.app import FaceAnalysis except ImportError as e: raise Exception(e) path = os.path.join(folder_paths.models_dir, "insightface") model = FaceAnalysis(name="buffalo_l", root=path, providers=[provider + 'ExecutionProvider',]) model.prepare(ctx_id=0, det_size=(640, 640)) return model def split_tiles(embeds, num_split): _, H, W, _ = embeds.shape out = [] for x in embeds: x = x.unsqueeze(0) h, w = H // num_split, W // num_split x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0) out.append(x_split) x_split = torch.stack(out, dim=0) return x_split def merge_hiddenstates(x, tiles): chunk_size = tiles*tiles x = x.split(chunk_size) out = [] for embeds in x: num_tiles = embeds.shape[0] tile_size = int((embeds.shape[1]-1) ** 0.5) grid_size = int(num_tiles ** 0.5) # Extract class tokens class_tokens = embeds[:, 0, :] # Save class tokens: [num_tiles, embeds[-1]] avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0) # Average token, shape: [1, 1, embeds[-1]] patch_embeds = embeds[:, 1:, :] # Shape: [num_tiles, tile_size^2, embeds[-1]] reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1]) merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1) for i in range(grid_size)], dim=0) merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size, embeds[-1]] # Pool to original size pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1) flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1]) # Add back the class token with_class = torch.cat([avg_class_token, flattened], dim=1) # Shape: original shape out.append(with_class) out = torch.cat(out, dim=0) return out def merge_embeddings(x, tiles): # TODO: this needs so much testing that I don't even chunk_size = tiles*tiles x = x.split(chunk_size) out = [] for embeds in x: num_tiles = embeds.shape[0] grid_size = int(num_tiles ** 0.5) tile_size = int(embeds.shape[1] ** 0.5) reshaped = embeds.reshape(grid_size, grid_size, tile_size, tile_size) # Merge the tiles merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1) for i in range(grid_size)], dim=0) merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size] # Pool to original size pooled = torch.nn.functional.adaptive_avg_pool2d(merged, (tile_size, tile_size)) # pool to [1, tile_size, tile_size] pooled = pooled.flatten(1) # flatten to [1, tile_size^2] out.append(pooled) out = torch.cat(out, dim=0) return out def encode_image_masked(clip_vision, image, mask=None, batch_size=0, tiles=1, ratio=1.0, clipvision_size=224): # full image embeds embeds = encode_image_masked_(clip_vision, image, mask, batch_size, clipvision_size=clipvision_size) tiles = min(tiles, 16) if tiles > 1: # split in tiles image_split = split_tiles(image, tiles) # get the embeds for each tile embeds_split = Output() for i in image_split: encoded = encode_image_masked_(clip_vision, i, mask, batch_size, clipvision_size=clipvision_size) if not hasattr(embeds_split, "image_embeds"): #embeds_split["last_hidden_state"] = encoded["last_hidden_state"] embeds_split["image_embeds"] = encoded["image_embeds"] embeds_split["penultimate_hidden_states"] = encoded["penultimate_hidden_states"] else: #embeds_split["last_hidden_state"] = torch.cat((embeds_split["last_hidden_state"], encoded["last_hidden_state"]), dim=0) embeds_split["image_embeds"] = torch.cat((embeds_split["image_embeds"], encoded["image_embeds"]), dim=0) embeds_split["penultimate_hidden_states"] = torch.cat((embeds_split["penultimate_hidden_states"], encoded["penultimate_hidden_states"]), dim=0) #embeds_split['last_hidden_state'] = merge_hiddenstates(embeds_split['last_hidden_state']) embeds_split["image_embeds"] = merge_embeddings(embeds_split["image_embeds"], tiles) embeds_split["penultimate_hidden_states"] = merge_hiddenstates(embeds_split["penultimate_hidden_states"], tiles) #embeds['last_hidden_state'] = torch.cat([embeds_split['last_hidden_state'], embeds['last_hidden_state']]) if embeds['image_embeds'].shape[0] > 1: # if we have more than one image we need to average the embeddings for consistency embeds['image_embeds'] = embeds['image_embeds']*ratio + embeds_split['image_embeds']*(1-ratio) embeds['penultimate_hidden_states'] = embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']*(1-ratio) #embeds['image_embeds'] = (embeds['image_embeds']*ratio + embeds_split['image_embeds']) / 2 #embeds['penultimate_hidden_states'] = (embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']) / 2 else: # otherwise we can concatenate them, they can be averaged later embeds['image_embeds'] = torch.cat([embeds['image_embeds']*ratio, embeds_split['image_embeds']]) embeds['penultimate_hidden_states'] = torch.cat([embeds['penultimate_hidden_states']*ratio, embeds_split['penultimate_hidden_states']]) #del embeds_split return embeds def encode_image_masked_(clip_vision, image, mask=None, batch_size=0, clipvision_size=224): model_management.load_model_gpu(clip_vision.patcher) outputs = Output() if batch_size == 0: batch_size = image.shape[0] elif batch_size > image.shape[0]: batch_size = image.shape[0] image_batch = torch.split(image, batch_size, dim=0) for img in image_batch: img = img.to(clip_vision.load_device) pixel_values = clip_preprocess(img, size=clipvision_size).float() # TODO: support for multiple masks if mask is not None: pixel_values = pixel_values * mask.to(clip_vision.load_device) out = clip_vision.model(pixel_values=pixel_values, intermediate_output=-2) if not hasattr(outputs, "last_hidden_state"): outputs["last_hidden_state"] = out[0].to(model_management.intermediate_device()) outputs["image_embeds"] = out[2].to(model_management.intermediate_device()) outputs["penultimate_hidden_states"] = out[1].to(model_management.intermediate_device()) else: outputs["last_hidden_state"] = torch.cat((outputs["last_hidden_state"], out[0].to(model_management.intermediate_device())), dim=0) outputs["image_embeds"] = torch.cat((outputs["image_embeds"], out[2].to(model_management.intermediate_device())), dim=0) outputs["penultimate_hidden_states"] = torch.cat((outputs["penultimate_hidden_states"], out[1].to(model_management.intermediate_device())), dim=0) del img, pixel_values, out torch.cuda.empty_cache() return outputs def tensor_to_size(source, dest_size): if isinstance(dest_size, torch.Tensor): dest_size = dest_size.shape[0] source_size = source.shape[0] if source_size < dest_size: shape = [dest_size - source_size] + [1]*(source.dim()-1) source = torch.cat((source, source[-1:].repeat(shape)), dim=0) elif source_size > dest_size: source = source[:dest_size] return source def min_(tensor_list): # return the element-wise min of the tensor list. x = torch.stack(tensor_list) mn = x.min(axis=0)[0] return torch.clamp(mn, min=0) def max_(tensor_list): # return the element-wise max of the tensor list. x = torch.stack(tensor_list) mx = x.max(axis=0)[0] return torch.clamp(mx, max=1) # From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/ def contrast_adaptive_sharpening(image, amount): img = T.functional.pad(image, (1, 1, 1, 1)).cpu() a = img[..., :-2, :-2] b = img[..., :-2, 1:-1] c = img[..., :-2, 2:] d = img[..., 1:-1, :-2] e = img[..., 1:-1, 1:-1] f = img[..., 1:-1, 2:] g = img[..., 2:, :-2] h = img[..., 2:, 1:-1] i = img[..., 2:, 2:] # Computing contrast cross = (b, d, e, f, h) mn = min_(cross) mx = max_(cross) diag = (a, c, g, i) mn2 = min_(diag) mx2 = max_(diag) mx = mx + mx2 mn = mn + mn2 # Computing local weight inv_mx = torch.reciprocal(mx) amp = inv_mx * torch.minimum(mn, (2 - mx)) # scaling amp = torch.sqrt(amp) w = - amp * (amount * (1/5 - 1/8) + 1/8) div = torch.reciprocal(1 + 4*w) output = ((b + d + f + h)*w + e) * div output = torch.nan_to_num(output) output = output.clamp(0, 1) return output def tensor_to_image(tensor): image = tensor.mul(255).clamp(0, 255).byte().cpu() image = image[..., [2, 1, 0]].numpy() return image def image_to_tensor(image): tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1) tensor = tensor[..., [2, 1, 0]] return tensor