# ComfyUI's ControlNet Auxiliary Preprocessors ![](./examples/example_mesh_graphormer.png) Plug-and-play [ComfyUI](https://github.com/comfyanonymous/ComfyUI) node sets for making [ControlNet](https://github.com/lllyasviel/ControlNet/) hint images The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to [the 🤗 Hub](https://huggingface.co/lllyasviel/Annotators). All credit & copyright goes to https://github.com/lllyasviel. # Marigold Check out Marigold Depth Estimator which can generate very detailed and sharp depth map from high-resolution still images. The mesh created by it is even 3D-printable. Due to diffusers, it can't be implemented in this extension but there is an Comfy implementation by Kijai https://github.com/kijai/ComfyUI-Marigold ![](./examples/example_marigold_flat.jpg) ![](./examples/example_marigold.png) # Updates Go to [Update page](./UPDATES.md) to follow updates # Installation: ## Using ComfyUI Manager (recommended): Install [ComfyUI Manager](https://github.com/ltdrdata/ComfyUI-Manager) and do steps introduced there to install this repo. ## Alternative: If you're running on Linux, or non-admin account on windows you'll want to ensure `/ComfyUI/custom_nodes` and `comfyui_controlnet_aux` has write permissions. There is now a **install.bat** you can run to install to portable if detected. Otherwise it will default to system and assume you followed ConfyUI's manual installation steps. If you can't run **install.bat** (e.g. you are a Linux user). Open the CMD/Shell and do the following: - Navigate to your `/ComfyUI/custom_nodes/` folder - Run `git clone https://github.com/Fannovel16/comfyui_controlnet_aux/` - Navigate to your `comfyui_controlnet_aux` folder - Portable/venv: - Run `path/to/ComfUI/python_embeded/python.exe -s -m pip install -r requirements.txt` - With system python - Run `pip install -r requirements.txt` - Start ComfyUI # Nodes Please note that this repo only supports preprocessors making hint images (e.g. stickman, canny edge, etc). All preprocessors except Inpaint are intergrated into `AIO Aux Preprocessor` node. This node allow you to quickly get the preprocessor but a preprocessor's own threshold parameters won't be able to set. You need to use its node directly to set thresholds. # Nodes (sections are categories in Comfy menu) ## Line Extractors | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Binary Lines | binary | control_scribble | | Canny Edge | canny | control_v11p_sd15_canny
control_canny
t2iadapter_canny | | HED Soft-Edge Lines | hed | control_v11p_sd15_softedge
control_hed | | Standard Lineart | standard_lineart | control_v11p_sd15_lineart | | Realistic Lineart | lineart (or `lineart_coarse` if `coarse` is enabled) | control_v11p_sd15_lineart | | Anime Lineart | lineart_anime | control_v11p_sd15s2_lineart_anime | | Manga Lineart | lineart_anime_denoise | control_v11p_sd15s2_lineart_anime | | M-LSD Lines | mlsd | control_v11p_sd15_mlsd
control_mlsd | | PiDiNet Soft-Edge Lines | pidinet | control_v11p_sd15_softedge
control_scribble | | Scribble Lines | scribble | control_v11p_sd15_scribble
control_scribble | | Scribble XDoG Lines | scribble_xdog | control_v11p_sd15_scribble
control_scribble | | Fake Scribble Lines | scribble_hed | control_v11p_sd15_scribble
control_scribble | | TEED Soft-Edge Lines | teed | [controlnet-sd-xl-1.0-softedge-dexined](https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-softedge-dexined/blob/main/controlnet-sd-xl-1.0-softedge-dexined.safetensors)
control_v11p_sd15_softedge (Theoretically) | Scribble PiDiNet Lines | scribble_pidinet | control_v11p_sd15_scribble
control_scribble | | AnyLine Lineart | | mistoLine_fp16.safetensors
mistoLine_rank256
control_v11p_sd15s2_lineart_anime
control_v11p_sd15_lineart | ## Normal and Depth Estimators | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | MiDaS Depth Map | (normal) depth | control_v11f1p_sd15_depth
control_depth
t2iadapter_depth | | LeReS Depth Map | depth_leres | control_v11f1p_sd15_depth
control_depth
t2iadapter_depth | | Zoe Depth Map | depth_zoe | control_v11f1p_sd15_depth
control_depth
t2iadapter_depth | | MiDaS Normal Map | normal_map | control_normal | | BAE Normal Map | normal_bae | control_v11p_sd15_normalbae | | MeshGraphormer Hand Refiner ([HandRefinder](https://github.com/wenquanlu/HandRefiner)) | depth_hand_refiner | [control_sd15_inpaint_depth_hand_fp16](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/control_sd15_inpaint_depth_hand_fp16.safetensors) | | Depth Anything | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) | | Zoe Depth Anything
(Basically Zoe but the encoder is replaced with DepthAnything) | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) | | Normal DSINE | | control_normal/control_v11p_sd15_normalbae | | Metric3D Depth | | control_v11f1p_sd15_depth
control_depth
t2iadapter_depth | | Metric3D Normal | | control_v11p_sd15_normalbae | | Depth Anything V2 | | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) | ## Faces and Poses Estimators | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | DWPose Estimator | dw_openpose_full | control_v11p_sd15_openpose
control_openpose
t2iadapter_openpose | | OpenPose Estimator | openpose (detect_body)
openpose_hand (detect_body + detect_hand)
openpose_faceonly (detect_face)
openpose_full (detect_hand + detect_body + detect_face) | control_v11p_sd15_openpose
control_openpose
t2iadapter_openpose | | MediaPipe Face Mesh | mediapipe_face | controlnet_sd21_laion_face_v2 | | Animal Estimator | animal_openpose | [control_sd15_animal_openpose_fp16](https://huggingface.co/huchenlei/animal_openpose/blob/main/control_sd15_animal_openpose_fp16.pth) | ## Optical Flow Estimators | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Unimatch Optical Flow | | [DragNUWA](https://github.com/ProjectNUWA/DragNUWA) | ### How to get OpenPose-format JSON? #### User-side This workflow will save images to ComfyUI's output folder (the same location as output images). If you haven't found `Save Pose Keypoints` node, update this extension ![](./examples/example_save_kps.png) #### Dev-side An array of [OpenPose-format JSON](https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#json-output-format) corresponsding to each frame in an IMAGE batch can be gotten from DWPose and OpenPose using `app.nodeOutputs` on the UI or `/history` API endpoint. JSON output from AnimalPose uses a kinda similar format to OpenPose JSON: ``` [ { "version": "ap10k", "animals": [ [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], ... ], "canvas_height": 512, "canvas_width": 768 }, ... ] ``` For extension developers (e.g. Openpose editor): ```js const poseNodes = app.graph._nodes.filter(node => ["OpenposePreprocessor", "DWPreprocessor", "AnimalPosePreprocessor"].includes(node.type)) for (const poseNode of poseNodes) { const openposeResults = JSON.parse(app.nodeOutputs[poseNode.id].openpose_json[0]) console.log(openposeResults) //An array containing Openpose JSON for each frame } ``` For API users: Javascript ```js import fetch from "node-fetch" //Remember to add "type": "module" to "package.json" async function main() { const promptId = '792c1905-ecfe-41f4-8114-83e6a4a09a9f' //Too lazy to POST /queue let history = await fetch(`http://127.0.0.1:8188/history/${promptId}`).then(re => re.json()) history = history[promptId] const nodeOutputs = Object.values(history.outputs).filter(output => output.openpose_json) for (const nodeOutput of nodeOutputs) { const openposeResults = JSON.parse(nodeOutput.openpose_json[0]) console.log(openposeResults) //An array containing Openpose JSON for each frame } } main() ``` Python ```py import json, urllib.request server_address = "127.0.0.1:8188" prompt_id = '' #Too lazy to POST /queue def get_history(prompt_id): with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: return json.loads(response.read()) history = get_history(prompt_id)[prompt_id] for o in history['outputs']: for node_id in history['outputs']: node_output = history['outputs'][node_id] if 'openpose_json' in node_output: print(json.loads(node_output['openpose_json'][0])) #An list containing Openpose JSON for each frame ``` ## Semantic Segmentation | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | OneFormer ADE20K Segmentor | oneformer_ade20k | control_v11p_sd15_seg | | OneFormer COCO Segmentor | oneformer_coco | control_v11p_sd15_seg | | UniFormer Segmentor | segmentation |control_sd15_seg
control_v11p_sd15_seg| ## T2IAdapter-only | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Color Pallete | color | t2iadapter_color | | Content Shuffle | shuffle | t2iadapter_style | ## Recolor | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Image Luminance | recolor_luminance | [ioclab_sd15_recolor](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/ioclab_sd15_recolor.safetensors)
[sai_xl_recolor_256lora](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/sai_xl_recolor_256lora.safetensors)
[bdsqlsz_controlllite_xl_recolor_luminance](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/bdsqlsz_controlllite_xl_recolor_luminance.safetensors) | | Image Intensity | recolor_intensity | Idk. Maybe same as above? | # Examples > A picture is worth a thousand words Credit to https://huggingface.co/thibaud/controlnet-sd21 for most examples below. You can get the same kind of results from preprocessor nodes of this repo. ## Line Extractors ### Canny Edge ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_canny.png) ### HED Lines ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_hed.png) ### Realistic Lineart ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_lineart.png) ### Scribble/Fake Scribble ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_scribble.png) ### TEED Soft-Edge Lines ![](./examples/example_teed.png) ### Anyline Lineart ![](./examples/example_anyline.png) ## Normal and Depth Map ### Depth (idk the preprocessor they use) ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_depth.png) ## Zoe - Depth Map ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_zoedepth.png) ## BAE - Normal Map ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_normalbae.png) ## MeshGraphormer ![](./examples/example_mesh_graphormer.png) ## Depth Anything & Zoe Depth Anything ![](./examples/example_depth_anything.png) ## DSINE ![](./examples/example_dsine.png) ## Metric3D ![](./examples/example_metric3d.png) ## Depth Anything V2 ![](./examples/example_depth_anything_v2.png) ## Faces and Poses ### OpenPose ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openpose.png) ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openposev2.png) ### Animal Pose (AP-10K) ![](./examples/example_animal_pose.png) ### DensePose ![](./examples/example_densepose.png) ## Semantic Segmantation ### OneFormer ADE20K Segmentor ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_ade20k.png) ### Anime Face Segmentor ![](./examples/example_anime_face_segmentor.png) ## T2IAdapter-only ### Color Pallete for T2I-Adapter ![](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_color.png) ## Optical Flow ### Unimatch ![](./examples/example_unimatch.png) ## Recolor ![](./examples/example_recolor.png) # Testing workflow https://github.com/Fannovel16/comfyui_controlnet_aux/blob/master/tests/test_cn_aux_full.json ![](https://github.com/Fannovel16/comfyui_controlnet_aux/blob/master/tests/pose.png?raw=true) # Q&A: ## Why some nodes doesn't appear after I installed this repo? This repo has a new mechanism which will skip any custom node can't be imported. If you meet this case, please create a issue on [Issues tab](https://github.com/Fannovel16/comfyui_controlnet_aux/issues) with the log from the command line. ## DWPose/AnimalPose only uses CPU so it's so slow. How can I make it use GPU? There are two ways to speed-up DWPose: using TorchScript checkpoints (.torchscript.pt) checkpoints or ONNXRuntime (.onnx). TorchScript way is little bit slower than ONNXRuntime but doesn't require any additional library and still way way faster than CPU. A torchscript bbox detector is compatiable with an onnx pose estimator and vice versa. ### TorchScript Set `bbox_detector` and `pose_estimator` according to this picture. You can try other bbox detector endings with `.torchscript.pt` to reduce bbox detection time if input images are ideal. ![](./examples/example_torchscript.png) ### ONNXRuntime If onnxruntime is installed successfully and the checkpoint used endings with `.onnx`, it will replace default cv2 backend to take advantage of GPU. Note that if you are using NVidia card, this method currently can only works on CUDA 11.8 (ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) unless you compile onnxruntime yourself. 1. Know your onnxruntime build: * * NVidia CUDA 11.x or bellow/AMD GPU: `onnxruntime-gpu` * * NVidia CUDA 12.x: `onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/` * * DirectML: `onnxruntime-directml` * * OpenVINO: `onnxruntime-openvino` Note that if this is your first time using ComfyUI, please test if it can run on your device before doing next steps. 2. Add it into `requirements.txt` 3. Run `install.bat` or pip command mentioned in Installation ![](./examples/example_onnx.png) # Assets files of preprocessors * anime_face_segment: [bdsqlsz/qinglong_controlnet-lllite/Annotators/UNet.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/UNet.pth), [anime-seg/isnetis.ckpt](https://huggingface.co/skytnt/anime-seg/blob/main/isnetis.ckpt) * densepose: [LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r50_fpn_dl.torchscript](https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/blob/main/densepose_r50_fpn_dl.torchscript) * dwpose: * * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx) * * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/dw-ll_ucoco_384_bs5.torchscript.pt), [yzd-v/DWPose/dw-ll_ucoco_384.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/dw-ll_ucoco_384.onnx) * animal_pose (ap10k): * * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx) * * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/rtmpose-m_ap10k_256_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/rtmpose-m_ap10k_256_bs5.torchscript.pt), [hr16/UnJIT-DWPose/rtmpose-m_ap10k_256.onnx](https://huggingface.co/hr16/UnJIT-DWPose/blob/main/rtmpose-m_ap10k_256.onnx) * hed: [lllyasviel/Annotators/ControlNetHED.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/ControlNetHED.pth) * leres: [lllyasviel/Annotators/res101.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/res101.pth), [lllyasviel/Annotators/latest_net_G.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/latest_net_G.pth) * lineart: [lllyasviel/Annotators/sk_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model.pth), [lllyasviel/Annotators/sk_model2.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model2.pth) * lineart_anime: [lllyasviel/Annotators/netG.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/netG.pth) * manga_line: [lllyasviel/Annotators/erika.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/erika.pth) * mesh_graphormer: [hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/graphormer_hand_state_dict.bin), [hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/hrnetv2_w64_imagenet_pretrained.pth) * midas: [lllyasviel/Annotators/dpt_hybrid-midas-501f0c75.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/dpt_hybrid-midas-501f0c75.pt) * mlsd: [lllyasviel/Annotators/mlsd_large_512_fp32.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/mlsd_large_512_fp32.pth) * normalbae: [lllyasviel/Annotators/scannet.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/scannet.pt) * oneformer: [lllyasviel/Annotators/250_16_swin_l_oneformer_ade20k_160k.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/250_16_swin_l_oneformer_ade20k_160k.pth) * open_pose: [lllyasviel/Annotators/body_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/body_pose_model.pth), [lllyasviel/Annotators/hand_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/hand_pose_model.pth), [lllyasviel/Annotators/facenet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/facenet.pth) * pidi: [lllyasviel/Annotators/table5_pidinet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/table5_pidinet.pth) * sam: [dhkim2810/MobileSAM/mobile_sam.pt](https://huggingface.co/dhkim2810/MobileSAM/blob/main/mobile_sam.pt) * uniformer: [lllyasviel/Annotators/upernet_global_small.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/upernet_global_small.pth) * zoe: [lllyasviel/Annotators/ZoeD_M12_N.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/ZoeD_M12_N.pt) * teed: [bdsqlsz/qinglong_controlnet-lllite/7_model.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/7_model.pth) * depth_anything: Either [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitl14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitb14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitb14.pth) or [LiheYoung/Depth-Anything/checkpoints/depth_anything_vits14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vits14.pth) * diffusion_edge: Either [hr16/Diffusion-Edge/diffusion_edge_indoor.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_indoor.pt), [hr16/Diffusion-Edge/diffusion_edge_urban.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_urban.pt) or [hr16/Diffusion-Edge/diffusion_edge_natrual.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_natrual.pt) * unimatch: Either [hr16/Unimatch/gmflow-scale2-regrefine6-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-regrefine6-mixdata.pth), [hr16/Unimatch/gmflow-scale2-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-mixdata.pth) or [hr16/Unimatch/gmflow-scale1-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale1-mixdata.pth) * zoe_depth_anything: Either [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt) or [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt) # 1500 Stars 😄 Star History Chart Thanks for yalls supports. I never thought the graph for stars would be linear lol.