import torch import numpy as np import comfy.model_management as model_management import comfy.utils # Requires comfyui_controlnet_aux funcsions and classes from ..utils import common_annotator_call, MAX_RESOLUTION def get_intensity_mask(image_array, lower_bound, upper_bound): mask = image_array[:, :, 0] mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0) mask = np.expand_dims(mask, 2).repeat(3, axis=2) return mask def combine_layers(base_layer, top_layer): mask = top_layer.astype(bool) temp = 1 - (1 - top_layer) * (1 - base_layer) result = base_layer * (~mask) + temp * mask return result class AnyLinePreprocessor: @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "merge_with_lineart": (["lineart_standard", "lineart_realisitic", "lineart_anime", "manga_line"], {"default": "lineart_standard"}), "resolution": ("INT", {"default": 1280, "min": 512, "max": MAX_RESOLUTION, "step": 8}) }, "optional": { "lineart_lower_bound": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}), "lineart_upper_bound": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}), "object_min_size": ("INT", {"default": 36, "min": 1, "max": MAX_RESOLUTION}), "object_connectivity": ("INT", {"default": 1, "min": 1, "max": MAX_RESOLUTION}), } } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = "get_anyline" CATEGORY = "ControlNet Preprocessors/Line Extractors" def __init__(self): self.device = model_management.get_torch_device() def get_anyline(self, image, merge_with_lineart, resolution, lineart_lower_bound=0, lineart_upper_bound=1, object_min_size=36, object_connectivity=1): from controlnet_aux.teed import TEDDetector from skimage import morphology pbar = comfy.utils.ProgressBar(3) # Process the image with MTEED model mteed_model = TEDDetector.from_pretrained("TheMistoAI/MistoLine", "MTEED.pth", subfolder="Anyline").to(self.device) mteed_result = common_annotator_call(mteed_model, image, resolution=resolution, show_pbar=False) mteed_result = mteed_result.numpy() del mteed_model pbar.update(1) # Process the image with the lineart standard preprocessor if merge_with_lineart == "lineart_standard": from controlnet_aux.lineart_standard import LineartStandardDetector lineart_standard_detector = LineartStandardDetector() lineart_result = common_annotator_call(lineart_standard_detector, image, guassian_sigma=2, intensity_threshold=3, resolution=resolution, show_pbar=False).numpy() del lineart_standard_detector else: from controlnet_aux.lineart import LineartDetector from controlnet_aux.lineart_anime import LineartAnimeDetector from controlnet_aux.manga_line import LineartMangaDetector lineart_detector = dict(lineart_realisitic=LineartDetector, lineart_anime=LineartAnimeDetector, manga_line=LineartMangaDetector)[merge_with_lineart] lineart_detector = lineart_detector.from_pretrained().to(self.device) lineart_result = common_annotator_call(lineart_detector, image, resolution=resolution, show_pbar=False).numpy() del lineart_detector pbar.update(1) final_result = [] for i in range(len(image)): _lineart_result = get_intensity_mask(lineart_result[i], lower_bound=lineart_lower_bound, upper_bound=lineart_upper_bound) _cleaned = morphology.remove_small_objects(_lineart_result.astype(bool), min_size=object_min_size, connectivity=object_connectivity) _lineart_result = _lineart_result * _cleaned _mteed_result = mteed_result[i] # Combine the results final_result.append(torch.from_numpy(combine_layers(_mteed_result, _lineart_result))) pbar.update(1) return (torch.stack(final_result),) NODE_CLASS_MAPPINGS = { "AnyLineArtPreprocessor_aux": AnyLinePreprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "AnyLineArtPreprocessor_aux": "AnyLine Lineart" }