from ..utils import common_annotator_call, create_node_input_types import comfy.model_management as model_management class LERES_Depth_Map_Preprocessor: @classmethod def INPUT_TYPES(s): return create_node_input_types( rm_nearest=("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1}), rm_background=("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1}), boost=(["enable", "disable"], {"default": "disable"}) ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators" def execute(self, image, rm_nearest, rm_background, resolution=512, **kwargs): from controlnet_aux.leres import LeresDetector model = LeresDetector.from_pretrained().to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution, thr_a=rm_nearest, thr_b=rm_background, boost=kwargs["boost"] == "enable") del model return (out, ) NODE_CLASS_MAPPINGS = { "LeReS-DepthMapPreprocessor": LERES_Depth_Map_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "LeReS-DepthMapPreprocessor": "LeReS Depth Map (enable boost for leres++)" }