from ..utils import common_annotator_call, create_node_input_types import comfy.model_management as model_management import numpy as np class MLSD_Preprocessor: @classmethod def INPUT_TYPES(s): return create_node_input_types( score_threshold = ("FLOAT", {"default": 0.1, "min": 0.01, "max": 2.0, "step": 0.01}), dist_threshold = ("FLOAT", {"default": 0.1, "min": 0.01, "max": 20.0, "step": 0.01}) ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Line Extractors" def execute(self, image, score_threshold, dist_threshold, resolution=512, **kwargs): from controlnet_aux.mlsd import MLSDdetector model = MLSDdetector.from_pretrained().to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution, thr_v=score_threshold, thr_d=dist_threshold) return (out, ) NODE_CLASS_MAPPINGS = { "M-LSDPreprocessor": MLSD_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "M-LSDPreprocessor": "M-LSD Lines" }