import torch import torch.nn as nn import torch.nn.functional as F from comfy.ldm.modules.attention import optimized_attention import comfy.ops class AttentionPool(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None, dtype=None, device=None, operations=None): super().__init__() self.positional_embedding = nn.Parameter(torch.empty(spacial_dim + 1, embed_dim, dtype=dtype, device=device)) self.k_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device) self.q_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device) self.v_proj = operations.Linear(embed_dim, embed_dim, dtype=dtype, device=device) self.c_proj = operations.Linear(embed_dim, output_dim or embed_dim, dtype=dtype, device=device) self.num_heads = num_heads self.embed_dim = embed_dim def forward(self, x): x = x[:,:self.positional_embedding.shape[0] - 1] x = x.permute(1, 0, 2) # NLC -> LNC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC x = x + comfy.ops.cast_to_input(self.positional_embedding[:, None, :], x) # (L+1)NC q = self.q_proj(x[:1]) k = self.k_proj(x) v = self.v_proj(x) batch_size = q.shape[1] head_dim = self.embed_dim // self.num_heads q = q.view(1, batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim) k = k.view(k.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim) v = v.view(v.shape[0], batch_size * self.num_heads, head_dim).transpose(0, 1).view(batch_size, self.num_heads, -1, head_dim) attn_output = optimized_attention(q, k, v, self.num_heads, skip_reshape=True).transpose(0, 1) attn_output = self.c_proj(attn_output) return attn_output.squeeze(0)