Flavio de Oliveira
commited on
Commit
•
4e53efb
1
Parent(s):
6220393
First commit
Browse files- .gitignore +5 -0
- app.py +146 -0
- examples/.gitkeep +0 -0
- requirements.txt +48 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flagged/
|
2 |
+
__pycache__
|
3 |
+
.DS_Store
|
4 |
+
*.pt
|
5 |
+
*.ipynb
|
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import supervision as sv # For annotations
|
5 |
+
from ultralytics import YOLO
|
6 |
+
import glob
|
7 |
+
import json
|
8 |
+
import ast
|
9 |
+
|
10 |
+
# TODO: finetune/test bigger models
|
11 |
+
model_1 = YOLO('best.pt') # Finetuned YoloV8s
|
12 |
+
# model_2 =
|
13 |
+
# model_3 =
|
14 |
+
|
15 |
+
box_annotator = sv.BoxAnnotator(
|
16 |
+
thickness=2,
|
17 |
+
text_thickness=2,
|
18 |
+
text_scale=1
|
19 |
+
)
|
20 |
+
|
21 |
+
def show_preds_image(option, image_path):
|
22 |
+
|
23 |
+
predict = []
|
24 |
+
|
25 |
+
if(option == "yolov8s-ft-yalta-ai-segmonto-manuscript"):
|
26 |
+
model = model_1
|
27 |
+
# if(option == "yolov8m-ft-yalta-ai-segmonto-manuscript"):
|
28 |
+
# model = model_2
|
29 |
+
# if(option == "yolov8l-ft-yalta-ai-segmonto-manuscript"):
|
30 |
+
# model = model_3
|
31 |
+
|
32 |
+
image = cv2.imread(image_path)
|
33 |
+
|
34 |
+
outputs = model.predict(source=image_path, device="cpu")
|
35 |
+
|
36 |
+
##############
|
37 |
+
# result = outputs[0]
|
38 |
+
# bboxes = np.array(result.boxes.xyxy, dtype="int") # result.boxes.xyxy.cpu()
|
39 |
+
# classes = np.array(result.boxes.cls, dtype="int")
|
40 |
+
|
41 |
+
# for cls, bbox in zip(classes, bboxes):
|
42 |
+
# (x, y, x2, y2) = bbox
|
43 |
+
# cv2.rectangle(frame, (x, y), (x2, y2), (0, 0, 225), 3)
|
44 |
+
# # cv2.putText(frame, str(cls), (x, y - 5), cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 225), 2)
|
45 |
+
# cv2.putText(frame, str(model.names[int(cls)]), (x, y - 5), cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 225), 2)
|
46 |
+
|
47 |
+
# return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
48 |
+
################
|
49 |
+
|
50 |
+
result = outputs[0]
|
51 |
+
# detections = sv.Detections.from_yolov8(result) # Deprecated
|
52 |
+
detections = sv.Detections.from_ultralytics(result)
|
53 |
+
|
54 |
+
labels = [
|
55 |
+
f"{model.model.names[class_id]} {confidence:0.2f}"
|
56 |
+
for _, _, confidence, class_id, _
|
57 |
+
in detections
|
58 |
+
]
|
59 |
+
frame = box_annotator.annotate(
|
60 |
+
scene=image,
|
61 |
+
detections=detections,
|
62 |
+
labels=labels
|
63 |
+
)
|
64 |
+
|
65 |
+
# Build the dictionary
|
66 |
+
predict.append(
|
67 |
+
{
|
68 |
+
"label": [ast.literal_eval(model.model.names[id]) for id in detections.class_id.tolist()],
|
69 |
+
# The list of coordinates of the points of the polygon.
|
70 |
+
"bbox": detections.xyxy.tolist(),
|
71 |
+
# Confidence that the model predicts the polygon in the right place
|
72 |
+
"confidence": detections.confidence.tolist(),
|
73 |
+
}
|
74 |
+
)
|
75 |
+
|
76 |
+
# captions = {
|
77 |
+
# f"{model.model.names[class_id]}": float("{:.2f}".format(confidence))
|
78 |
+
# for _, _, confidence, class_id, _
|
79 |
+
# in detections
|
80 |
+
# }
|
81 |
+
|
82 |
+
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), json.dumps(predict, indent=2)#, captions
|
83 |
+
|
84 |
+
title = "<h1 style='text-align: center'>YoloV8 Medieval Manuscript Region Detection 📜🪶 - SegmOnto Ontology</h1>"
|
85 |
+
description="""Treating page layout recognition on historical documents as an object detection task (compared to the usual pixel segmentation approach). Model finetuned on **YALTAi Segmonto Manuscript and Early Printed Book Dataset** (HF `dataset card`: [biglam/yalta_ai_segmonto_manuscript_dataset](https://huggingface.co/datasets/biglam/yalta_ai_segmonto_manuscript_dataset)).
|
86 |
+
* Note that this demo is running on a small resource environment, `basic CPU plan` (`2 vCPU, 16GB RAM`).
|
87 |
+
"""
|
88 |
+
article = "<p style='text-align: center'>ArXiv: <a href='https://arxiv.org/abs/2207.11230v1' target='_blank'>You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine</a></p>"
|
89 |
+
|
90 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
91 |
+
|
92 |
+
gr.HTML(title)
|
93 |
+
gr.Markdown(description)
|
94 |
+
# gr.HTML(description)
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
with gr.Column(scale=1, variant="panel"):
|
98 |
+
with gr.Row():
|
99 |
+
input_image = gr.components.Image(type="filepath", label="Input Image", height=350)
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
input_model = gr.components.Dropdown(["yolov8s-ft-yalta-ai-segmonto-manuscript"], label="Model")
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
btn_clear = gr.Button(value="Clear")
|
106 |
+
btn = gr.Button(value="Submit")
|
107 |
+
# btn.click(show_preds_image, inputs=[input_model, input_image], outputs=output)
|
108 |
+
|
109 |
+
with gr.Row(): # gr.Column()
|
110 |
+
with gr.Accordion(label="Choose an example:", open=False):
|
111 |
+
gr.Examples(
|
112 |
+
examples = [["yolov8s-ft-yalta-ai-segmonto-manuscript", str(file)] for file in glob.glob("./examples/*.jpg")],
|
113 |
+
inputs = [input_model, input_image],
|
114 |
+
# label="Samples",
|
115 |
+
)
|
116 |
+
|
117 |
+
with gr.Column(scale=1, variant="panel"):
|
118 |
+
with gr.Tab("Output"):
|
119 |
+
with gr.Row():
|
120 |
+
output = gr.components.Image(type="numpy", label="Output", height=500)
|
121 |
+
|
122 |
+
# with gr.Row():
|
123 |
+
# btn_flag = gr.Button(value="Flag") # TODO
|
124 |
+
|
125 |
+
# with gr.Row():
|
126 |
+
# captions = gr.Dataframe(headers=["Label", "Confidence"])
|
127 |
+
|
128 |
+
with gr.Tab("JSON Output"):
|
129 |
+
with gr.Row():
|
130 |
+
# Create a column so that the JSON output doesn't take the full size of the page
|
131 |
+
with gr.Column():
|
132 |
+
# Create a collapsible region
|
133 |
+
with gr.Accordion(label="JSON Output", open="False"):
|
134 |
+
# Generates a json with the model predictions
|
135 |
+
json_output = gr.JSON(label="JSON")
|
136 |
+
|
137 |
+
btn.click(show_preds_image, inputs=[input_model, input_image], outputs=[output, json_output])
|
138 |
+
btn_clear.click(lambda: [None, None, None, None], outputs=[input_image, input_model, output, json_output])
|
139 |
+
# btn_flag.click()
|
140 |
+
|
141 |
+
with gr.Row():
|
142 |
+
gr.HTML(article)
|
143 |
+
|
144 |
+
if __name__ =="__main__":
|
145 |
+
|
146 |
+
demo.queue().launch() # share=True, auth=("username", "password")
|
examples/.gitkeep
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics requirements
|
2 |
+
# Usage: pip install -r requirements.txt
|
3 |
+
|
4 |
+
# Base ----------------------------------------
|
5 |
+
hydra-core>=1.2.0
|
6 |
+
matplotlib>=3.2.2
|
7 |
+
numpy>=1.18.5
|
8 |
+
opencv-python>=4.1.1
|
9 |
+
Pillow>=7.1.2
|
10 |
+
PyYAML>=5.3.1
|
11 |
+
requests>=2.23.0
|
12 |
+
scipy>=1.4.1
|
13 |
+
torch>=1.7.0
|
14 |
+
torchvision>=0.8.1
|
15 |
+
tqdm>=4.64.0
|
16 |
+
ultralytics
|
17 |
+
gradio_client==0.2.7
|
18 |
+
|
19 |
+
# Logging -------------------------------------
|
20 |
+
tensorboard>=2.4.1
|
21 |
+
# clearml
|
22 |
+
# comet
|
23 |
+
|
24 |
+
# Plotting ------------------------------------
|
25 |
+
pandas>=1.1.4
|
26 |
+
seaborn>=0.11.0
|
27 |
+
|
28 |
+
# Export --------------------------------------
|
29 |
+
# coremltools>=6.0 # CoreML export
|
30 |
+
# onnx>=1.12.0 # ONNX export
|
31 |
+
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
32 |
+
# nvidia-pyindex # TensorRT export
|
33 |
+
# nvidia-tensorrt # TensorRT export
|
34 |
+
# scikit-learn==0.19.2 # CoreML quantization
|
35 |
+
# tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
|
36 |
+
# tensorflowjs>=3.9.0 # TF.js export
|
37 |
+
# openvino-dev # OpenVINO export
|
38 |
+
|
39 |
+
# Extras --------------------------------------
|
40 |
+
ipython # interactive notebook
|
41 |
+
psutil # system utilization
|
42 |
+
thop>=0.1.1 # FLOPs computation
|
43 |
+
# albumentations>=1.0.3
|
44 |
+
# pycocotools>=2.0.6 # COCO mAP
|
45 |
+
# roboflow
|
46 |
+
|
47 |
+
# HUB -----------------------------------------
|
48 |
+
GitPython>=3.1.24
|