Spaces:
Running
Running
Merge pull request #108 from borisdayma/feat-inf
Browse files- app/app.py +32 -44
- dev/inference/README.md +0 -1
- dev/inference/wandb-examples-from-backend.py +0 -76
- dev/inference/wandb-examples.py +0 -163
- {dev → tools}/inference/inference_pipeline.ipynb +0 -0
- dev/inference/wandb-backend.ipynb → tools/inference/log_inference_samples.ipynb +34 -73
- {dev → tools}/inference/samples.txt +16 -3
app/app.py
CHANGED
@@ -2,31 +2,10 @@
|
|
2 |
# coding: utf-8
|
3 |
|
4 |
from dalle_mini.backend import ServiceError, get_images_from_backend
|
5 |
-
|
6 |
import streamlit as st
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
from streamlit.report_thread import get_report_ctx
|
12 |
-
def query_cache(q_emb=None):
|
13 |
-
ctx = get_report_ctx()
|
14 |
-
session_id = ctx.session_id
|
15 |
-
session = st.server.server.Server.get_current()._get_session_info(session_id).session
|
16 |
-
if not hasattr(session, "_query_state"):
|
17 |
-
setattr(session, "_query_state", q_emb)
|
18 |
-
if q_emb:
|
19 |
-
session._query_state = q_emb
|
20 |
-
return session._query_state
|
21 |
-
|
22 |
-
def set_run_again(state):
|
23 |
-
query_cache(state)
|
24 |
-
|
25 |
-
def should_run_again():
|
26 |
-
state = query_cache()
|
27 |
-
return state if state is not None else False
|
28 |
-
|
29 |
-
st.sidebar.markdown("""
|
30 |
<style>
|
31 |
.aligncenter {
|
32 |
text-align: center;
|
@@ -35,8 +14,11 @@ st.sidebar.markdown("""
|
|
35 |
<p class="aligncenter">
|
36 |
<img src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png"/>
|
37 |
</p>
|
38 |
-
""",
|
39 |
-
|
|
|
|
|
|
|
40 |
___
|
41 |
<p style='text-align: center'>
|
42 |
DALL·E mini is an AI model that generates images from any prompt you give!
|
@@ -47,21 +29,20 @@ Created by Boris Dayma et al. 2021
|
|
47 |
<br/>
|
48 |
<a href="https://github.com/borisdayma/dalle-mini" target="_blank">GitHub</a> | <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA" target="_blank">Project Report</a>
|
49 |
</p>
|
50 |
-
""",
|
|
|
|
|
51 |
|
52 |
-
st.header(
|
53 |
-
st.subheader(
|
54 |
|
55 |
prompt = st.text_input("What do you want to see?")
|
56 |
|
57 |
-
test = st.empty()
|
58 |
DEBUG = False
|
59 |
-
if prompt != ""
|
60 |
container = st.empty()
|
61 |
-
|
62 |
-
|
63 |
-
# but it returns None.
|
64 |
-
container.markdown(f"""
|
65 |
<style> p {{ margin:0 }} div {{ margin:0 }} </style>
|
66 |
<div data-stale="false" class="element-container css-1e5imcs e1tzin5v1">
|
67 |
<div class="stAlert">
|
@@ -78,32 +59,39 @@ if prompt != "" or (should_run_again and prompt != ""):
|
|
78 |
</div>
|
79 |
</div>
|
80 |
<small><i>Predictions may take up to 40s under high load. Please stand by.</i></small>
|
81 |
-
""",
|
|
|
|
|
82 |
|
83 |
try:
|
84 |
backend_url = st.secrets["BACKEND_SERVER"]
|
85 |
print(f"Getting selections: {prompt}")
|
86 |
selected = get_images_from_backend(prompt, backend_url)
|
87 |
|
88 |
-
|
|
|
|
|
89 |
for i, img in enumerate(selected):
|
90 |
-
cols[i%
|
91 |
-
|
92 |
container.markdown(f"**{prompt}**")
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
except ServiceError as error:
|
97 |
container.text(f"Service unavailable, status: {error.status_code}")
|
98 |
except KeyError:
|
99 |
if DEBUG:
|
100 |
-
container.markdown(
|
|
|
101 |
**Error: BACKEND_SERVER unset**
|
102 |
|
103 |
Please, create a file called `.streamlit/secrets.toml` inside the app's folder and include a line to configure the server URL:
|
104 |
```
|
105 |
BACKEND_SERVER="<server url>"
|
106 |
```
|
107 |
-
"""
|
|
|
108 |
else:
|
109 |
-
container.markdown(
|
|
|
|
|
|
2 |
# coding: utf-8
|
3 |
|
4 |
from dalle_mini.backend import ServiceError, get_images_from_backend
|
|
|
5 |
import streamlit as st
|
6 |
|
7 |
+
st.sidebar.markdown(
|
8 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
<style>
|
10 |
.aligncenter {
|
11 |
text-align: center;
|
|
|
14 |
<p class="aligncenter">
|
15 |
<img src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png"/>
|
16 |
</p>
|
17 |
+
""",
|
18 |
+
unsafe_allow_html=True,
|
19 |
+
)
|
20 |
+
st.sidebar.markdown(
|
21 |
+
"""
|
22 |
___
|
23 |
<p style='text-align: center'>
|
24 |
DALL·E mini is an AI model that generates images from any prompt you give!
|
|
|
29 |
<br/>
|
30 |
<a href="https://github.com/borisdayma/dalle-mini" target="_blank">GitHub</a> | <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA" target="_blank">Project Report</a>
|
31 |
</p>
|
32 |
+
""",
|
33 |
+
unsafe_allow_html=True,
|
34 |
+
)
|
35 |
|
36 |
+
st.header("DALL·E mini")
|
37 |
+
st.subheader("Generate images from text")
|
38 |
|
39 |
prompt = st.text_input("What do you want to see?")
|
40 |
|
|
|
41 |
DEBUG = False
|
42 |
+
if prompt != "":
|
43 |
container = st.empty()
|
44 |
+
container.markdown(
|
45 |
+
f"""
|
|
|
|
|
46 |
<style> p {{ margin:0 }} div {{ margin:0 }} </style>
|
47 |
<div data-stale="false" class="element-container css-1e5imcs e1tzin5v1">
|
48 |
<div class="stAlert">
|
|
|
59 |
</div>
|
60 |
</div>
|
61 |
<small><i>Predictions may take up to 40s under high load. Please stand by.</i></small>
|
62 |
+
""",
|
63 |
+
unsafe_allow_html=True,
|
64 |
+
)
|
65 |
|
66 |
try:
|
67 |
backend_url = st.secrets["BACKEND_SERVER"]
|
68 |
print(f"Getting selections: {prompt}")
|
69 |
selected = get_images_from_backend(prompt, backend_url)
|
70 |
|
71 |
+
margin = 0.1 # for better position of zoom in arrow
|
72 |
+
n_columns = 3
|
73 |
+
cols = st.columns([1] + [margin, 1] * (n_columns - 1))
|
74 |
for i, img in enumerate(selected):
|
75 |
+
cols[(i % n_columns) * 2].image(img)
|
|
|
76 |
container.markdown(f"**{prompt}**")
|
77 |
+
|
78 |
+
st.button("Again!", key="again_button")
|
79 |
+
|
80 |
except ServiceError as error:
|
81 |
container.text(f"Service unavailable, status: {error.status_code}")
|
82 |
except KeyError:
|
83 |
if DEBUG:
|
84 |
+
container.markdown(
|
85 |
+
"""
|
86 |
**Error: BACKEND_SERVER unset**
|
87 |
|
88 |
Please, create a file called `.streamlit/secrets.toml` inside the app's folder and include a line to configure the server URL:
|
89 |
```
|
90 |
BACKEND_SERVER="<server url>"
|
91 |
```
|
92 |
+
"""
|
93 |
+
)
|
94 |
else:
|
95 |
+
container.markdown(
|
96 |
+
"Error -5, please try again or [report it](mailto:[email protected])."
|
97 |
+
)
|
dev/inference/README.md
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Scripts to generate predictions for assessment and reporting.
|
|
|
|
dev/inference/wandb-examples-from-backend.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
from PIL import Image, ImageDraw, ImageFont
|
5 |
-
import wandb
|
6 |
-
import os
|
7 |
-
|
8 |
-
from dalle_mini.backend import ServiceError, get_images_from_backend
|
9 |
-
from dalle_mini.helpers import captioned_strip
|
10 |
-
|
11 |
-
os.environ["WANDB_SILENT"] = "true"
|
12 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
13 |
-
|
14 |
-
def log_to_wandb(prompts):
|
15 |
-
try:
|
16 |
-
backend_url = os.environ["BACKEND_SERVER"]
|
17 |
-
for _ in range(1):
|
18 |
-
for prompt in prompts:
|
19 |
-
print(f"Getting selections for: {prompt}")
|
20 |
-
# make a separate run per prompt
|
21 |
-
with wandb.init(
|
22 |
-
entity='wandb',
|
23 |
-
project='hf-flax-dalle-mini',
|
24 |
-
job_type='predictions',# tags=['openai'],
|
25 |
-
config={'prompt': prompt}
|
26 |
-
):
|
27 |
-
imgs = []
|
28 |
-
selected = get_images_from_backend(prompt, backend_url)
|
29 |
-
strip = captioned_strip(selected, prompt)
|
30 |
-
imgs.append(wandb.Image(strip))
|
31 |
-
wandb.log({"images": imgs})
|
32 |
-
except ServiceError as error:
|
33 |
-
print(f"Service unavailable, status: {error.status_code}")
|
34 |
-
except KeyError:
|
35 |
-
print("Error: BACKEND_SERVER unset")
|
36 |
-
|
37 |
-
prompts = [
|
38 |
-
# "white snow covered mountain under blue sky during daytime",
|
39 |
-
# "aerial view of beach during daytime",
|
40 |
-
# "aerial view of beach at night",
|
41 |
-
# "a farmhouse surrounded by beautiful flowers",
|
42 |
-
# "an armchair in the shape of an avocado",
|
43 |
-
# "young woman riding her bike trough a forest",
|
44 |
-
# "a unicorn is passing by a rainbow in a field of flowers",
|
45 |
-
# "illustration of a baby shark swimming around corals",
|
46 |
-
# "painting of an oniric forest glade surrounded by tall trees",
|
47 |
-
# "sunset over green mountains",
|
48 |
-
# "a forest glade surrounded by tall trees in a sunny Spring morning",
|
49 |
-
# "fishing village under the moonlight in a serene sunset",
|
50 |
-
# "cartoon of a carrot with big eyes",
|
51 |
-
# "still life in the style of Kandinsky",
|
52 |
-
# "still life in the style of Picasso",
|
53 |
-
# "a graphite sketch of a gothic cathedral",
|
54 |
-
# "a graphite sketch of Elon Musk",
|
55 |
-
# "a watercolor pond with green leaves and yellow flowers",
|
56 |
-
# "a logo of a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps",
|
57 |
-
# "happy celebration in a small village in Africa",
|
58 |
-
# "a logo of an armchair in the shape of an avocado"
|
59 |
-
# "Pele and Maradona in a hypothetical match",
|
60 |
-
# "Mohammed Ali and Mike Tyson in a hypothetical match",
|
61 |
-
# "a storefront that has the word 'openai' written on it",
|
62 |
-
# "a pentagonal green clock",
|
63 |
-
# "a collection of glasses is sitting on a table",
|
64 |
-
# "a small red block sitting on a large green block",
|
65 |
-
# "an extreme close-up view of a capybara sitting in a field",
|
66 |
-
# "a cross-section view of a walnut",
|
67 |
-
# "a professional high-quality emoji of a lovestruck cup of boba",
|
68 |
-
# "a photo of san francisco's golden gate bridge",
|
69 |
-
# "an illustration of a baby daikon radish in a tutu walking a dog",
|
70 |
-
# "a picture of the Eiffel tower on the Moon",
|
71 |
-
# "a colorful stairway to heaven",
|
72 |
-
"this is a detailed high-resolution scan of a human brain"
|
73 |
-
]
|
74 |
-
|
75 |
-
for _ in range(1):
|
76 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/inference/wandb-examples.py
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
import random
|
5 |
-
|
6 |
-
import jax
|
7 |
-
from flax.training.common_utils import shard
|
8 |
-
from flax.jax_utils import replicate, unreplicate
|
9 |
-
|
10 |
-
from transformers.models.bart.modeling_flax_bart import *
|
11 |
-
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
12 |
-
|
13 |
-
import os
|
14 |
-
|
15 |
-
from PIL import Image
|
16 |
-
import numpy as np
|
17 |
-
import matplotlib.pyplot as plt
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torchvision.transforms as T
|
21 |
-
import torchvision.transforms.functional as TF
|
22 |
-
from torchvision.transforms import InterpolationMode
|
23 |
-
|
24 |
-
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
25 |
-
from vqgan_jax.modeling_flax_vqgan import VQModel
|
26 |
-
|
27 |
-
# ## CLIP Scoring
|
28 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
29 |
-
|
30 |
-
import wandb
|
31 |
-
import os
|
32 |
-
|
33 |
-
from dalle_mini.helpers import captioned_strip
|
34 |
-
|
35 |
-
|
36 |
-
os.environ["WANDB_SILENT"] = "true"
|
37 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
38 |
-
|
39 |
-
# TODO: used for legacy support
|
40 |
-
BASE_MODEL = 'facebook/bart-large-cnn'
|
41 |
-
|
42 |
-
# set id to None so our latest images don't get overwritten
|
43 |
-
id = None
|
44 |
-
run = wandb.init(id=id,
|
45 |
-
entity='wandb',
|
46 |
-
project="hf-flax-dalle-mini",
|
47 |
-
job_type="predictions",
|
48 |
-
resume="allow"
|
49 |
-
)
|
50 |
-
artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-4oh3u7ca:latest', type='bart_model')
|
51 |
-
artifact_dir = artifact.download()
|
52 |
-
|
53 |
-
# create our model
|
54 |
-
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
55 |
-
|
56 |
-
# TODO: legacy support (earlier models)
|
57 |
-
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
58 |
-
model.config.force_bos_token_to_be_generated = False
|
59 |
-
model.config.forced_bos_token_id = None
|
60 |
-
model.config.forced_eos_token_id = None
|
61 |
-
|
62 |
-
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
63 |
-
|
64 |
-
def custom_to_pil(x):
|
65 |
-
x = np.clip(x, 0., 1.)
|
66 |
-
x = (255*x).astype(np.uint8)
|
67 |
-
x = Image.fromarray(x)
|
68 |
-
if not x.mode == "RGB":
|
69 |
-
x = x.convert("RGB")
|
70 |
-
return x
|
71 |
-
|
72 |
-
def generate(input, rng, params):
|
73 |
-
return model.generate(
|
74 |
-
**input,
|
75 |
-
max_length=257,
|
76 |
-
num_beams=1,
|
77 |
-
do_sample=True,
|
78 |
-
prng_key=rng,
|
79 |
-
eos_token_id=50000,
|
80 |
-
pad_token_id=50000,
|
81 |
-
params=params,
|
82 |
-
)
|
83 |
-
|
84 |
-
def get_images(indices, params):
|
85 |
-
return vqgan.decode_code(indices, params=params)
|
86 |
-
|
87 |
-
def plot_images(images):
|
88 |
-
fig = plt.figure(figsize=(40, 20))
|
89 |
-
columns = 4
|
90 |
-
rows = 2
|
91 |
-
plt.subplots_adjust(hspace=0, wspace=0)
|
92 |
-
|
93 |
-
for i in range(1, columns*rows +1):
|
94 |
-
fig.add_subplot(rows, columns, i)
|
95 |
-
plt.imshow(images[i-1])
|
96 |
-
plt.gca().axes.get_yaxis().set_visible(False)
|
97 |
-
plt.show()
|
98 |
-
|
99 |
-
def stack_reconstructions(images):
|
100 |
-
w, h = images[0].size[0], images[0].size[1]
|
101 |
-
img = Image.new("RGB", (len(images)*w, h))
|
102 |
-
for i, img_ in enumerate(images):
|
103 |
-
img.paste(img_, (i*w,0))
|
104 |
-
return img
|
105 |
-
|
106 |
-
p_generate = jax.pmap(generate, "batch")
|
107 |
-
p_get_images = jax.pmap(get_images, "batch")
|
108 |
-
|
109 |
-
bart_params = replicate(model.params)
|
110 |
-
vqgan_params = replicate(vqgan.params)
|
111 |
-
|
112 |
-
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
113 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
114 |
-
|
115 |
-
def hallucinate(prompt, num_images=64):
|
116 |
-
prompt = [prompt] * jax.device_count()
|
117 |
-
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
|
118 |
-
inputs = shard(inputs)
|
119 |
-
|
120 |
-
all_images = []
|
121 |
-
for i in range(num_images // jax.device_count()):
|
122 |
-
key = random.randint(0, 1e7)
|
123 |
-
rng = jax.random.PRNGKey(key)
|
124 |
-
rngs = jax.random.split(rng, jax.local_device_count())
|
125 |
-
indices = p_generate(inputs, rngs, bart_params).sequences
|
126 |
-
indices = indices[:, :, 1:]
|
127 |
-
|
128 |
-
images = p_get_images(indices, vqgan_params)
|
129 |
-
images = np.squeeze(np.asarray(images), 1)
|
130 |
-
for image in images:
|
131 |
-
all_images.append(custom_to_pil(image))
|
132 |
-
return all_images
|
133 |
-
|
134 |
-
def clip_top_k(prompt, images, k=8):
|
135 |
-
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
136 |
-
# FIXME: image should be resized and normalized prior to being processed by CLIP
|
137 |
-
outputs = clip(**inputs)
|
138 |
-
logits = outputs.logits_per_text
|
139 |
-
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
140 |
-
return [images[score] for score in scores]
|
141 |
-
|
142 |
-
def log_to_wandb(prompts):
|
143 |
-
strips = []
|
144 |
-
for prompt in prompts:
|
145 |
-
print(f"Generating candidates for: {prompt}")
|
146 |
-
images = hallucinate(prompt, num_images=32)
|
147 |
-
selected = clip_top_k(prompt, images, k=8)
|
148 |
-
strip = captioned_strip(selected, prompt)
|
149 |
-
strips.append(wandb.Image(strip))
|
150 |
-
wandb.log({"images": strips})
|
151 |
-
|
152 |
-
prompts = prompts = [
|
153 |
-
"white snow covered mountain under blue sky during daytime",
|
154 |
-
"aerial view of beach during daytime",
|
155 |
-
"aerial view of beach at night",
|
156 |
-
"an armchair in the shape of an avocado",
|
157 |
-
"young woman riding her bike trough a forest",
|
158 |
-
"rice fields by the mediterranean coast",
|
159 |
-
"white houses on the hill of a greek coastline",
|
160 |
-
"illustration of a shark with a baby shark",
|
161 |
-
]
|
162 |
-
|
163 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{dev → tools}/inference/inference_pipeline.ipynb
RENAMED
File without changes
|
dev/inference/wandb-backend.ipynb → tools/inference/log_inference_samples.ipynb
RENAMED
@@ -24,25 +24,6 @@
|
|
24 |
"from dalle_mini.text import TextNormalizer"
|
25 |
]
|
26 |
},
|
27 |
-
{
|
28 |
-
"cell_type": "code",
|
29 |
-
"execution_count": null,
|
30 |
-
"id": "23e00271-941c-4e1b-b6a9-107a1b77324d",
|
31 |
-
"metadata": {},
|
32 |
-
"outputs": [],
|
33 |
-
"source": [
|
34 |
-
"run_ids = ['3kaut6e8']\n",
|
35 |
-
"# Alamy - 3kaut6e8\n",
|
36 |
-
"# YFCC - to do\n",
|
37 |
-
"# HF spaces - 4oh3u7ca\n",
|
38 |
-
"ENTITY, PROJECT = 'wandb', 'hf-flax-dalle-mini'\n",
|
39 |
-
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', None\n",
|
40 |
-
"normalize_text = False\n",
|
41 |
-
"latest_only = True # log only latest or all versions\n",
|
42 |
-
"suffix = '' # mainly for duplicate inference runs with a deleted version\n",
|
43 |
-
"add_clip_32 = False"
|
44 |
-
]
|
45 |
-
},
|
46 |
{
|
47 |
"cell_type": "code",
|
48 |
"execution_count": null,
|
@@ -50,13 +31,9 @@
|
|
50 |
"metadata": {},
|
51 |
"outputs": [],
|
52 |
"source": [
|
53 |
-
"run_ids = ['
|
54 |
-
"# poorly shuffled 1nj161cl\n",
|
55 |
-
"# well shuffled he9rrc3q\n",
|
56 |
-
"# non normalized 1fwxpyfh ! requires changing normalize_text\n",
|
57 |
"ENTITY, PROJECT = 'dalle-mini', 'dalle-mini' # used only for training run\n",
|
58 |
-
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384',
|
59 |
-
"normalize_text = True\n",
|
60 |
"latest_only = True # log only latest or all versions\n",
|
61 |
"suffix = '' # mainly for duplicate inference runs with a deleted version\n",
|
62 |
"add_clip_32 = False"
|
@@ -85,7 +62,7 @@
|
|
85 |
"batch_size = 8\n",
|
86 |
"num_images = 128\n",
|
87 |
"top_k = 8\n",
|
88 |
-
"text_normalizer = TextNormalizer()
|
89 |
"padding_item = 'NONE'\n",
|
90 |
"seed = random.randint(0, 2**32-1)\n",
|
91 |
"key = jax.random.PRNGKey(seed)\n",
|
@@ -100,11 +77,12 @@
|
|
100 |
"outputs": [],
|
101 |
"source": [
|
102 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
103 |
-
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
|
104 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
|
105 |
-
"clip_params = replicate(clip.params)\n",
|
106 |
"vqgan_params = replicate(vqgan.params)\n",
|
107 |
"\n",
|
|
|
|
|
|
|
|
|
108 |
"if add_clip_32:\n",
|
109 |
" clip32 = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
110 |
" processor32 = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
@@ -123,8 +101,8 @@
|
|
123 |
" return vqgan.decode_code(indices, params=params)\n",
|
124 |
"\n",
|
125 |
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
126 |
-
"def
|
127 |
-
" logits =
|
128 |
" return logits\n",
|
129 |
"\n",
|
130 |
"if add_clip_32:\n",
|
@@ -229,7 +207,7 @@
|
|
229 |
"outputs": [],
|
230 |
"source": [
|
231 |
"run_id = run_ids[0]\n",
|
232 |
-
"# TODO:
|
233 |
]
|
234 |
},
|
235 |
{
|
@@ -248,10 +226,8 @@
|
|
248 |
"for artifact in artifact_versions:\n",
|
249 |
" print(f'Processing artifact: {artifact.name}')\n",
|
250 |
" version = int(artifact.version[1:])\n",
|
251 |
-
"
|
252 |
-
"
|
253 |
-
" results32 = []\n",
|
254 |
-
" columns = ['Caption'] + [f'Image {i+1}' for i in range(top_k)] + [f'Score {i+1}' for i in range(top_k)]\n",
|
255 |
" \n",
|
256 |
" if latest_only:\n",
|
257 |
" assert last_inference_version is None or version > last_inference_version\n",
|
@@ -288,7 +264,7 @@
|
|
288 |
"\n",
|
289 |
" # process one batch of captions\n",
|
290 |
" for batch in tqdm(samples):\n",
|
291 |
-
" processed_prompts = [text_normalizer(x) for x in batch] if normalize_text else list(batch)\n",
|
292 |
"\n",
|
293 |
" # repeat the prompts to distribute over each device and tokenize\n",
|
294 |
" processed_prompts = processed_prompts * jax.device_count()\n",
|
@@ -297,7 +273,7 @@
|
|
297 |
"\n",
|
298 |
" # generate images\n",
|
299 |
" images = []\n",
|
300 |
-
" pbar = tqdm(range(num_images // jax.device_count()), desc='Generating Images', leave=
|
301 |
" for i in pbar:\n",
|
302 |
" key, subkey = jax.random.split(key)\n",
|
303 |
" encoded_images = p_generate(tokenized_prompt, shard_prng_key(subkey), model_params)\n",
|
@@ -307,34 +283,13 @@
|
|
307 |
" for img in decoded_images:\n",
|
308 |
" images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))\n",
|
309 |
"\n",
|
310 |
-
"
|
311 |
-
"
|
312 |
-
" clip_inputs = processor(text=batch, images=images, return_tensors='np', padding='max_length', max_length=77, truncation=True).data\n",
|
313 |
-
" # each shard will have one prompt, images need to be reorganized to be associated to the correct shard\n",
|
314 |
-
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
|
315 |
-
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
|
316 |
-
" clip_inputs = shard(clip_inputs)\n",
|
317 |
-
" logits = p_clip(clip_inputs, clip_params)\n",
|
318 |
-
" logits = logits.reshape(-1, num_images)\n",
|
319 |
-
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
|
320 |
-
" logits = jax.device_get(logits)\n",
|
321 |
-
" # add to results table\n",
|
322 |
-
" for i, (idx, scores, sample) in enumerate(zip(top_scores, logits, batch)):\n",
|
323 |
-
" if sample == padding_item: continue\n",
|
324 |
-
" cur_images = [images[x] for x in images_per_prompt_indices + i]\n",
|
325 |
-
" top_images = [wandb.Image(cur_images[x]) for x in idx]\n",
|
326 |
-
" top_scores = [scores[x] for x in idx]\n",
|
327 |
-
" results.append([sample] + top_images + top_scores)\n",
|
328 |
-
" \n",
|
329 |
-
" # get clip 32 scores - TODO: this should be refactored as it is same code as above\n",
|
330 |
-
" if add_clip_32:\n",
|
331 |
-
" print('Calculating CLIP 32 scores')\n",
|
332 |
-
" clip_inputs = processor32(text=batch, images=images, return_tensors='np', padding='max_length', max_length=77, truncation=True).data\n",
|
333 |
" # each shard will have one prompt, images need to be reorganized to be associated to the correct shard\n",
|
334 |
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
|
335 |
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
|
336 |
" clip_inputs = shard(clip_inputs)\n",
|
337 |
-
" logits =
|
338 |
" logits = logits.reshape(-1, num_images)\n",
|
339 |
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
|
340 |
" logits = jax.device_get(logits)\n",
|
@@ -342,13 +297,24 @@
|
|
342 |
" for i, (idx, scores, sample) in enumerate(zip(top_scores, logits, batch)):\n",
|
343 |
" if sample == padding_item: continue\n",
|
344 |
" cur_images = [images[x] for x in images_per_prompt_indices + i]\n",
|
345 |
-
" top_images = [wandb.Image(cur_images[x]) for x in idx]\n",
|
346 |
-
"
|
347 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
" pbar.close()\n",
|
349 |
"\n",
|
|
|
|
|
350 |
" # log results\n",
|
351 |
-
" table = wandb.Table(columns=columns, data=
|
352 |
" run.log({'Samples': table, 'version': version})\n",
|
353 |
" wandb.finish()\n",
|
354 |
" \n",
|
@@ -363,15 +329,10 @@
|
|
363 |
{
|
364 |
"cell_type": "code",
|
365 |
"execution_count": null,
|
366 |
-
"id": "
|
367 |
"metadata": {},
|
368 |
"outputs": [],
|
369 |
-
"source": [
|
370 |
-
"# TODO: not implemented\n",
|
371 |
-
"def log_runs(runs):\n",
|
372 |
-
" for run in tqdm(runs):\n",
|
373 |
-
" log_run(run)"
|
374 |
-
]
|
375 |
}
|
376 |
],
|
377 |
"metadata": {
|
|
|
24 |
"from dalle_mini.text import TextNormalizer"
|
25 |
]
|
26 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
"execution_count": null,
|
|
|
31 |
"metadata": {},
|
32 |
"outputs": [],
|
33 |
"source": [
|
34 |
+
"run_ids = ['63otg87g']\n",
|
|
|
|
|
|
|
35 |
"ENTITY, PROJECT = 'dalle-mini', 'dalle-mini' # used only for training run\n",
|
36 |
+
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', 'e93a26e7707683d349bf5d5c41c5b0ef69b677a9'\n",
|
|
|
37 |
"latest_only = True # log only latest or all versions\n",
|
38 |
"suffix = '' # mainly for duplicate inference runs with a deleted version\n",
|
39 |
"add_clip_32 = False"
|
|
|
62 |
"batch_size = 8\n",
|
63 |
"num_images = 128\n",
|
64 |
"top_k = 8\n",
|
65 |
+
"text_normalizer = TextNormalizer()\n",
|
66 |
"padding_item = 'NONE'\n",
|
67 |
"seed = random.randint(0, 2**32-1)\n",
|
68 |
"key = jax.random.PRNGKey(seed)\n",
|
|
|
77 |
"outputs": [],
|
78 |
"source": [
|
79 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
|
|
|
|
|
|
80 |
"vqgan_params = replicate(vqgan.params)\n",
|
81 |
"\n",
|
82 |
+
"clip16 = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
|
83 |
+
"processor16 = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
|
84 |
+
"clip16_params = replicate(clip16.params)\n",
|
85 |
+
"\n",
|
86 |
"if add_clip_32:\n",
|
87 |
" clip32 = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
88 |
" processor32 = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
|
|
101 |
" return vqgan.decode_code(indices, params=params)\n",
|
102 |
"\n",
|
103 |
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
104 |
+
"def p_clip16(inputs, params):\n",
|
105 |
+
" logits = clip16(params=params, **inputs).logits_per_image\n",
|
106 |
" return logits\n",
|
107 |
"\n",
|
108 |
"if add_clip_32:\n",
|
|
|
207 |
"outputs": [],
|
208 |
"source": [
|
209 |
"run_id = run_ids[0]\n",
|
210 |
+
"# TODO: loop over runs"
|
211 |
]
|
212 |
},
|
213 |
{
|
|
|
226 |
"for artifact in artifact_versions:\n",
|
227 |
" print(f'Processing artifact: {artifact.name}')\n",
|
228 |
" version = int(artifact.version[1:])\n",
|
229 |
+
" results16, results32 = [], []\n",
|
230 |
+
" columns = ['Caption'] + [f'Image {i+1}' for i in range(top_k)]\n",
|
|
|
|
|
231 |
" \n",
|
232 |
" if latest_only:\n",
|
233 |
" assert last_inference_version is None or version > last_inference_version\n",
|
|
|
264 |
"\n",
|
265 |
" # process one batch of captions\n",
|
266 |
" for batch in tqdm(samples):\n",
|
267 |
+
" processed_prompts = [text_normalizer(x) for x in batch] if model.config.normalize_text else list(batch)\n",
|
268 |
"\n",
|
269 |
" # repeat the prompts to distribute over each device and tokenize\n",
|
270 |
" processed_prompts = processed_prompts * jax.device_count()\n",
|
|
|
273 |
"\n",
|
274 |
" # generate images\n",
|
275 |
" images = []\n",
|
276 |
+
" pbar = tqdm(range(num_images // jax.device_count()), desc='Generating Images', leave=True)\n",
|
277 |
" for i in pbar:\n",
|
278 |
" key, subkey = jax.random.split(key)\n",
|
279 |
" encoded_images = p_generate(tokenized_prompt, shard_prng_key(subkey), model_params)\n",
|
|
|
283 |
" for img in decoded_images:\n",
|
284 |
" images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))\n",
|
285 |
"\n",
|
286 |
+
" def add_clip_results(results, processor, p_clip, clip_params): \n",
|
287 |
+
" clip_inputs = processor(text=batch, images=images, return_tensors='np', padding='max_length', max_length=77, truncation=True).data\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
" # each shard will have one prompt, images need to be reorganized to be associated to the correct shard\n",
|
289 |
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
|
290 |
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
|
291 |
" clip_inputs = shard(clip_inputs)\n",
|
292 |
+
" logits = p_clip(clip_inputs, clip_params)\n",
|
293 |
" logits = logits.reshape(-1, num_images)\n",
|
294 |
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
|
295 |
" logits = jax.device_get(logits)\n",
|
|
|
297 |
" for i, (idx, scores, sample) in enumerate(zip(top_scores, logits, batch)):\n",
|
298 |
" if sample == padding_item: continue\n",
|
299 |
" cur_images = [images[x] for x in images_per_prompt_indices + i]\n",
|
300 |
+
" top_images = [wandb.Image(cur_images[x], caption=f'Score: {scores[x]:.2f}') for x in idx]\n",
|
301 |
+
" results.append([sample] + top_images)\n",
|
302 |
+
" \n",
|
303 |
+
" # get clip scores\n",
|
304 |
+
" pbar.set_description('Calculating CLIP 16 scores')\n",
|
305 |
+
" add_clip_results(results16, processor16, p_clip16, clip16_params)\n",
|
306 |
+
" \n",
|
307 |
+
" # get clip 32 scores\n",
|
308 |
+
" if add_clip_32:\n",
|
309 |
+
" pbar.set_description('Calculating CLIP 32 scores')\n",
|
310 |
+
" add_clip_results(results32, processor32, p_clip32, clip32_params)\n",
|
311 |
+
"\n",
|
312 |
" pbar.close()\n",
|
313 |
"\n",
|
314 |
+
" \n",
|
315 |
+
"\n",
|
316 |
" # log results\n",
|
317 |
+
" table = wandb.Table(columns=columns, data=results16)\n",
|
318 |
" run.log({'Samples': table, 'version': version})\n",
|
319 |
" wandb.finish()\n",
|
320 |
" \n",
|
|
|
329 |
{
|
330 |
"cell_type": "code",
|
331 |
"execution_count": null,
|
332 |
+
"id": "415d3f54-7226-43de-9eea-4283a948dc93",
|
333 |
"metadata": {},
|
334 |
"outputs": [],
|
335 |
+
"source": []
|
|
|
|
|
|
|
|
|
|
|
336 |
}
|
337 |
],
|
338 |
"metadata": {
|
{dev → tools}/inference/samples.txt
RENAMED
@@ -32,7 +32,9 @@ illustration of an astronaut in a space suit playing guitar
|
|
32 |
a clown wearing a spacesuit floating in space
|
33 |
a dog playing with a ball
|
34 |
a cat sits on top of an alligator
|
|
|
35 |
a rat holding a red lightsaber in a white background
|
|
|
36 |
A unicorn is passing by a rainbow in a field of flowers
|
37 |
an elephant made of carrots
|
38 |
an elephant on a unicycle during a circus
|
@@ -40,6 +42,7 @@ photography of a penguin watching television
|
|
40 |
a penguin is walking on the Moon, Earth is in the background
|
41 |
a penguin standing on a tower of books holds onto a rope from a helicopter
|
42 |
rat wearing a crown
|
|
|
43 |
looking into the sky, 10 airplanes are seen overhead
|
44 |
shelves filled with books and alchemy potion bottles
|
45 |
this is a detailed high-resolution scan of a human brain
|
@@ -61,7 +64,6 @@ a cartoon of a superhero bear
|
|
61 |
an illustration of a cute skeleton wearing a blue hoodie
|
62 |
illustration of a baby shark swimming around corals
|
63 |
an illustration of an avocado in a beanie riding a motorcycle
|
64 |
-
Cartoon of a carrot with big eyes
|
65 |
logo of a robot wearing glasses and reading a book
|
66 |
illustration of a cactus lifting weigths
|
67 |
logo of a cactus lifting weights
|
@@ -70,11 +72,12 @@ a skeleton with the shape of a spider
|
|
70 |
a collection of glasses is sitting on a table
|
71 |
a painting of a capybara sitting on a mountain during fall in surrealist style
|
72 |
a pentagonal green clock
|
73 |
-
a pixel art illustration of an eagle sitting in a field in the afternoon
|
74 |
a small red block sitting on a large green block
|
75 |
a storefront that has the word 'openai' written on it
|
76 |
a tatoo of a black broccoli
|
77 |
a variety of clocks is sitting on a table
|
|
|
|
|
78 |
an emoji of a baby fox wearing a blue hat, green gloves, red shirt, and yellow pants
|
79 |
an emoji of a baby penguin wearing a blue hat, blue gloves, red shirt, and green pants
|
80 |
an extreme close-up view of a capybara sitting in a field
|
@@ -86,10 +89,11 @@ urinals are lined up in a jungle
|
|
86 |
a muscular banana sitting upright on a bench smoking watching a banana on television, high definition photography
|
87 |
a human face
|
88 |
a person is holding a phone and a waterbottle, running a marathon
|
|
|
89 |
Young woman riding her bike through the forest
|
90 |
the best soccer team of the world
|
91 |
-
the best basketball team of the world
|
92 |
the best football team of the world
|
|
|
93 |
happy, happiness
|
94 |
sad, sadness
|
95 |
the representation of infinity
|
@@ -105,3 +109,12 @@ an avocado armchair flying into space
|
|
105 |
a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps
|
106 |
an illustration of an avocado in a christmas sweater staring at its reflection in a mirror
|
107 |
illustration of an avocado armchair getting married to a pineapple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
a clown wearing a spacesuit floating in space
|
33 |
a dog playing with a ball
|
34 |
a cat sits on top of an alligator
|
35 |
+
a very cute cat laying by a big bike
|
36 |
a rat holding a red lightsaber in a white background
|
37 |
+
a very cute giraffe making a funny face
|
38 |
A unicorn is passing by a rainbow in a field of flowers
|
39 |
an elephant made of carrots
|
40 |
an elephant on a unicycle during a circus
|
|
|
42 |
a penguin is walking on the Moon, Earth is in the background
|
43 |
a penguin standing on a tower of books holds onto a rope from a helicopter
|
44 |
rat wearing a crown
|
45 |
+
Cartoon of a carrot with big eyes
|
46 |
looking into the sky, 10 airplanes are seen overhead
|
47 |
shelves filled with books and alchemy potion bottles
|
48 |
this is a detailed high-resolution scan of a human brain
|
|
|
64 |
an illustration of a cute skeleton wearing a blue hoodie
|
65 |
illustration of a baby shark swimming around corals
|
66 |
an illustration of an avocado in a beanie riding a motorcycle
|
|
|
67 |
logo of a robot wearing glasses and reading a book
|
68 |
illustration of a cactus lifting weigths
|
69 |
logo of a cactus lifting weights
|
|
|
72 |
a collection of glasses is sitting on a table
|
73 |
a painting of a capybara sitting on a mountain during fall in surrealist style
|
74 |
a pentagonal green clock
|
|
|
75 |
a small red block sitting on a large green block
|
76 |
a storefront that has the word 'openai' written on it
|
77 |
a tatoo of a black broccoli
|
78 |
a variety of clocks is sitting on a table
|
79 |
+
a table has a train model on it with other cars and things
|
80 |
+
a pixel art illustration of an eagle sitting in a field in the afternoon
|
81 |
an emoji of a baby fox wearing a blue hat, green gloves, red shirt, and yellow pants
|
82 |
an emoji of a baby penguin wearing a blue hat, blue gloves, red shirt, and green pants
|
83 |
an extreme close-up view of a capybara sitting in a field
|
|
|
89 |
a muscular banana sitting upright on a bench smoking watching a banana on television, high definition photography
|
90 |
a human face
|
91 |
a person is holding a phone and a waterbottle, running a marathon
|
92 |
+
a child eating a birthday cake near some balloons
|
93 |
Young woman riding her bike through the forest
|
94 |
the best soccer team of the world
|
|
|
95 |
the best football team of the world
|
96 |
+
the best basketball team of the world
|
97 |
happy, happiness
|
98 |
sad, sadness
|
99 |
the representation of infinity
|
|
|
109 |
a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps
|
110 |
an illustration of an avocado in a christmas sweater staring at its reflection in a mirror
|
111 |
illustration of an avocado armchair getting married to a pineapple
|
112 |
+
half human half cat
|
113 |
+
half human half dog
|
114 |
+
half human half pen
|
115 |
+
half human half garbage
|
116 |
+
half human half avocado
|
117 |
+
half human half Eiffel tower
|
118 |
+
a propaganda poster for transhumanism
|
119 |
+
a propaganda poster for building a space elevator
|
120 |
+
a beautiful epic fantasy painting of a space elevator
|