Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
•
6047b49
1
Parent(s):
ecf5f29
Notebooks that demonstrate streaming encoding
Browse filesUsing either Huggingface Datasets, or webdataset.
Note that parallel processing is not possible for Huggingface Datasets
in streaming mode. A local copy or the use of webdataset are preferred
for large streaming datasets.
dev/encoding/vqgan-jax-encoding-streaming.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dev/encoding/vqgan-jax-encoding-webdataset.ipynb
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "d0b72877",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# vqgan-jax-encoding-alamy"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "ba7b31e6",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"Encoding notebook for Alamy dataset."
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 1,
|
22 |
+
"id": "3b59489e",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import numpy as np\n",
|
27 |
+
"from tqdm import tqdm\n",
|
28 |
+
"\n",
|
29 |
+
"import torch\n",
|
30 |
+
"import torchvision.transforms as T\n",
|
31 |
+
"import torchvision.transforms.functional as TF\n",
|
32 |
+
"from torchvision.transforms import InterpolationMode\n",
|
33 |
+
"import math\n",
|
34 |
+
"\n",
|
35 |
+
"import webdataset as wds\n",
|
36 |
+
"\n",
|
37 |
+
"import jax\n",
|
38 |
+
"from jax import pmap"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "markdown",
|
43 |
+
"id": "c7c4c1e6",
|
44 |
+
"metadata": {},
|
45 |
+
"source": [
|
46 |
+
"## Dataset and Parameters"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": null,
|
52 |
+
"id": "13c6631b",
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"shards = 'https://s3.us-west-1.wasabisys.com/doodlebot-wasabi/datasets/alamy/webdataset/alamy-{000..895}.tar'\n",
|
57 |
+
"\n",
|
58 |
+
"# Enable curl retries to try to work around temporary network / server errors.\n",
|
59 |
+
"# This shouldn't be necessary when using reliable servers.\n",
|
60 |
+
"shards = f'pipe:curl -s --retry 5 --retry-delay 5 -L {shards} || true'\n",
|
61 |
+
"\n",
|
62 |
+
"length = 44710810 # estimate\n",
|
63 |
+
"\n",
|
64 |
+
"from pathlib import Path\n",
|
65 |
+
"\n",
|
66 |
+
"# Output directory for encoded files\n",
|
67 |
+
"encoded_output = Path.home()/'data'/'alamy'/'encoded'\n",
|
68 |
+
"\n",
|
69 |
+
"batch_size = 128 # Per device\n",
|
70 |
+
"num_workers = 8 # Using larger numbers seemed to be less reliable in this case."
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 3,
|
76 |
+
"id": "3435fb85",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"bs = batch_size * jax.device_count() # Use a smaller size for testing\n",
|
81 |
+
"batches = math.ceil(length / bs)"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 4,
|
87 |
+
"id": "669b35df",
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"def center_crop(image, max_size=256):\n",
|
92 |
+
" # Note: we allow upscaling too. We should exclude small images. \n",
|
93 |
+
" image = TF.resize(image, max_size, interpolation=InterpolationMode.LANCZOS)\n",
|
94 |
+
" image = TF.center_crop(image, output_size=2 * [max_size])\n",
|
95 |
+
" return image\n",
|
96 |
+
"\n",
|
97 |
+
"preprocess_image = T.Compose([\n",
|
98 |
+
" center_crop,\n",
|
99 |
+
" T.ToTensor(),\n",
|
100 |
+
" lambda t: t.permute(1, 2, 0) # Reorder, we need dimensions last\n",
|
101 |
+
"])\n",
|
102 |
+
"\n",
|
103 |
+
"# Is there a shortcut for this?\n",
|
104 |
+
"def extract_from_json(item):\n",
|
105 |
+
" item['caption'] = item['json']['caption']\n",
|
106 |
+
" item['url'] = item['json']['url']\n",
|
107 |
+
" return item"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 7,
|
113 |
+
"id": "369d9719",
|
114 |
+
"metadata": {},
|
115 |
+
"outputs": [],
|
116 |
+
"source": [
|
117 |
+
"# Log exceptions to a hardcoded file\n",
|
118 |
+
"def ignore_and_log(exn):\n",
|
119 |
+
" with open('errors.txt', 'a') as f:\n",
|
120 |
+
" f.write(f'{exn}\\n')\n",
|
121 |
+
" return True\n",
|
122 |
+
"\n",
|
123 |
+
"# Or simply use `wds.ignore_and_continue`\n",
|
124 |
+
"exception_handler = ignore_and_log\n",
|
125 |
+
"exception_handler = wds.warn_and_continue"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 8,
|
131 |
+
"id": "5149b6d5",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"dataset = wds.WebDataset(shards,\n",
|
136 |
+
" length=batches, # Hint so `len` is implemented\n",
|
137 |
+
" shardshuffle=False, # Keep same order for encoded files for easier bookkeeping\n",
|
138 |
+
" handler=exception_handler, # Ignore read errors instead of failing. See also: `warn_and_continue`\n",
|
139 |
+
")\n",
|
140 |
+
"\n",
|
141 |
+
"dataset = (dataset \n",
|
142 |
+
" .decode('pil') # decode image with PIL\n",
|
143 |
+
" .map(extract_from_json)\n",
|
144 |
+
" .map_dict(jpg=preprocess_image, handler=exception_handler)\n",
|
145 |
+
" .to_tuple('url', 'jpg', 'caption') # filter to keep only url (for reference), image, caption.\n",
|
146 |
+
" .batched(bs)) # better to batch in the dataset (but we could also do it in the dataloader) - this arg does not affect speed and we could remove it"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 10,
|
152 |
+
"id": "8cac98cb",
|
153 |
+
"metadata": {
|
154 |
+
"scrolled": true
|
155 |
+
},
|
156 |
+
"outputs": [
|
157 |
+
{
|
158 |
+
"name": "stdout",
|
159 |
+
"output_type": "stream",
|
160 |
+
"text": [
|
161 |
+
"CPU times: user 8min 26s, sys: 12.5 s, total: 8min 38s\n",
|
162 |
+
"Wall time: 14.4 s\n"
|
163 |
+
]
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"%%time\n",
|
168 |
+
"urls, images, captions = next(iter(dataset))"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": 7,
|
174 |
+
"id": "cd268fbf",
|
175 |
+
"metadata": {},
|
176 |
+
"outputs": [
|
177 |
+
{
|
178 |
+
"data": {
|
179 |
+
"text/plain": [
|
180 |
+
"torch.Size([1024, 256, 256, 3])"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
"execution_count": 7,
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "execute_result"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"source": [
|
189 |
+
"images.shape"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "markdown",
|
194 |
+
"id": "44d50a51",
|
195 |
+
"metadata": {},
|
196 |
+
"source": [
|
197 |
+
"### Torch DataLoader"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": 8,
|
203 |
+
"id": "e2df5e13",
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [],
|
206 |
+
"source": [
|
207 |
+
"dl = torch.utils.data.DataLoader(dataset, batch_size=None, num_workers=num_workers)"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "markdown",
|
212 |
+
"id": "a354472b",
|
213 |
+
"metadata": {},
|
214 |
+
"source": [
|
215 |
+
"## VQGAN-JAX model"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 9,
|
221 |
+
"id": "2fcf01d7",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "markdown",
|
230 |
+
"id": "9daa636d",
|
231 |
+
"metadata": {},
|
232 |
+
"source": [
|
233 |
+
"We'll use a VQGAN trained with Taming Transformers and converted to a JAX model."
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": 10,
|
239 |
+
"id": "47a8b818",
|
240 |
+
"metadata": {
|
241 |
+
"scrolled": true
|
242 |
+
},
|
243 |
+
"outputs": [
|
244 |
+
{
|
245 |
+
"name": "stdout",
|
246 |
+
"output_type": "stream",
|
247 |
+
"text": [
|
248 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
249 |
+
]
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"source": [
|
253 |
+
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "markdown",
|
258 |
+
"id": "62ad01c3",
|
259 |
+
"metadata": {},
|
260 |
+
"source": [
|
261 |
+
"## Encoding"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "markdown",
|
266 |
+
"id": "20357f74",
|
267 |
+
"metadata": {},
|
268 |
+
"source": [
|
269 |
+
"Encoding is really simple using `shard` to automatically distribute \"superbatches\" across devices, and `pmap`. This is all it takes to create our encoding function, that will be jitted on first use."
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 11,
|
275 |
+
"id": "6686b004",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"from flax.training.common_utils import shard\n",
|
280 |
+
"from functools import partial"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 12,
|
286 |
+
"id": "322a4619",
|
287 |
+
"metadata": {},
|
288 |
+
"outputs": [],
|
289 |
+
"source": [
|
290 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
291 |
+
"def encode(batch):\n",
|
292 |
+
" # Not sure if we should `replicate` params, does not seem to have any effect\n",
|
293 |
+
" _, indices = model.encode(batch)\n",
|
294 |
+
" return indices"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "markdown",
|
299 |
+
"id": "14375a41",
|
300 |
+
"metadata": {},
|
301 |
+
"source": [
|
302 |
+
"### Encoding loop"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": 13,
|
308 |
+
"id": "ff6c10d4",
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": [
|
312 |
+
"import os\n",
|
313 |
+
"import pandas as pd\n",
|
314 |
+
"\n",
|
315 |
+
"def encode_captioned_dataset(dataloader, output_dir, save_every=14):\n",
|
316 |
+
" output_dir.mkdir(parents=True, exist_ok=True)\n",
|
317 |
+
"\n",
|
318 |
+
" # Saving strategy:\n",
|
319 |
+
" # - Create a new file every so often to prevent excessive file seeking.\n",
|
320 |
+
" # - Save each batch after processing.\n",
|
321 |
+
" # - Keep the file open until we are done with it.\n",
|
322 |
+
" file = None \n",
|
323 |
+
" for n, (urls, images, captions) in enumerate(tqdm(dataloader)):\n",
|
324 |
+
" if (n % save_every == 0):\n",
|
325 |
+
" if file is not None:\n",
|
326 |
+
" file.close()\n",
|
327 |
+
" split_num = n // save_every\n",
|
328 |
+
" file = open(output_dir/f'split_{split_num:05x}.jsonl', 'w')\n",
|
329 |
+
"\n",
|
330 |
+
" images = shard(images.numpy().squeeze())\n",
|
331 |
+
" encoded = encode(images)\n",
|
332 |
+
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
|
333 |
+
"\n",
|
334 |
+
" encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
|
335 |
+
" batch_df = pd.DataFrame.from_dict({\"url\": urls, \"caption\": captions, \"encoding\": encoded_as_string})\n",
|
336 |
+
" batch_df.to_json(file, orient='records', lines=True)"
|
337 |
+
]
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"cell_type": "markdown",
|
341 |
+
"id": "09ff75a3",
|
342 |
+
"metadata": {},
|
343 |
+
"source": [
|
344 |
+
"Create a new file every 318 iterations. This should produce splits of ~500 MB each, when using a total batch size of 1024."
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": 14,
|
350 |
+
"id": "96222bb4",
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": [
|
354 |
+
"save_every = 318"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "code",
|
359 |
+
"execution_count": null,
|
360 |
+
"id": "7704863d",
|
361 |
+
"metadata": {},
|
362 |
+
"outputs": [
|
363 |
+
{
|
364 |
+
"name": "stderr",
|
365 |
+
"output_type": "stream",
|
366 |
+
"text": [
|
367 |
+
" 2%|█▌ | 1085/43663 [31:58<20:43:42, 1.75s/it]"
|
368 |
+
]
|
369 |
+
}
|
370 |
+
],
|
371 |
+
"source": [
|
372 |
+
"encode_captioned_dataset(dl, encoded_output, save_every=save_every)"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "markdown",
|
377 |
+
"id": "8953dd84",
|
378 |
+
"metadata": {},
|
379 |
+
"source": [
|
380 |
+
"----"
|
381 |
+
]
|
382 |
+
}
|
383 |
+
],
|
384 |
+
"metadata": {
|
385 |
+
"interpreter": {
|
386 |
+
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
|
387 |
+
},
|
388 |
+
"kernelspec": {
|
389 |
+
"display_name": "Python 3 (ipykernel)",
|
390 |
+
"language": "python",
|
391 |
+
"name": "python3"
|
392 |
+
},
|
393 |
+
"language_info": {
|
394 |
+
"codemirror_mode": {
|
395 |
+
"name": "ipython",
|
396 |
+
"version": 3
|
397 |
+
},
|
398 |
+
"file_extension": ".py",
|
399 |
+
"mimetype": "text/x-python",
|
400 |
+
"name": "python",
|
401 |
+
"nbconvert_exporter": "python",
|
402 |
+
"pygments_lexer": "ipython3",
|
403 |
+
"version": "3.8.10"
|
404 |
+
}
|
405 |
+
},
|
406 |
+
"nbformat": 4,
|
407 |
+
"nbformat_minor": 5
|
408 |
+
}
|