Spaces:
Runtime error
Runtime error
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
# Designing the interface | |
st.title("French Image Caption App") | |
# For newline | |
st.write('\n') | |
image = Image.open('images/image.png') | |
show = st.image(image, use_column_width=True) | |
# show.image(image, 'Preloaded Image', use_column_width=True) | |
with st.spinner('Loading ViT-GPT2 model ...'): | |
from model import * | |
st.sidebar.write(f'Vit-GPT2 model loaded :)') | |
st.sidebar.title("Upload Image") | |
# Disabling warning | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
# Choose your own image | |
uploaded_file = st.sidebar.file_uploader(" ", type=['png', 'jpg', 'jpeg']) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
show.image(image, 'Uploaded Image', use_column_width=True) | |
# For newline | |
st.sidebar.write('\n') | |
if st.sidebar.button("Click here to get image caption"): | |
if uploaded_file is None: | |
st.sidebar.write("Please upload an Image to Classify") | |
else: | |
with st.spinner('Generating image caption ...'): | |
caption, tokens, token_ids = predict(image) | |
st.success(f'caption: {caption}') | |
st.success(f'tokens: {tokens}') | |
st.success(f'token ids: {token_ids}') | |
st.sidebar.header("ViT-GPT2 predicts:") | |
st.sidebar.write(f"caption: {caption}", '\n') | |