import streamlit as st from PIL import Image import numpy as np # Designing the interface st.title("🖼️ French Image Caption App") st.markdown( """ An image caption model [ViT-GPT2](https://huggingface.co/flax-community/vit-gpt2/tree/main) by combining the ViT model and a French GPT2 model. [Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).]\n The pretained weights of both models are loaded, with a set of randomly initialized cross-attention weigths. The model is trained on 65000 images from the COCO dataset for about 1500 steps, with the original english cpationis are translated to french for training purpose. """ ) #image = Image.open('samples/val_000000039769.jpg') #show = st.image(image, use_column_width=True) #show.image(image, 'Preloaded Image', use_column_width=True) with st.spinner('Loading and compiling ViT-GPT2 model ...'): from model import * st.sidebar.write(f'Vit-GPT2 model loaded :)') st.sidebar.title("Select a sample image") sample_name = st.sidebar.selectbox( "Please Choose the Model", sample_fns ) sample_name = f"COCO_val2014_{sample_name.replace('.jpg', '').zfill(12)}.jpg" sample_path = os.path.join(sample_dir, sample_name) image = Image.open(sample_path) show = st.image(image, use_column_width=True) show.image(image, '\n\nSelected Image', use_column_width=True) # For newline st.sidebar.write('\n') with st.spinner('Generating image caption ...'): caption = predict(image) image.close() caption_en = translator.translate(caption, src='fr', dest='en') st.header('Prediction:') st.subheader(f'{caption}\n') st.subheader(f'English Translation: {caption_en}\n') st.sidebar.header("ViT-GPT2 predicts:") st.sidebar.write(f"{caption}", '\n')