import streamlit as st from PIL import Image import numpy as np # Designing the interface st.title("French Image Caption App") # For newline st.write('\n') #image = Image.open('samples/val_000000039769.jpg') #show = st.image(image, use_column_width=True) #show.image(image, 'Preloaded Image', use_column_width=True) with st.spinner('Loading ViT-GPT2 model ...'): from model import * st.sidebar.write(f'Vit-GPT2 model loaded :)') st.sidebar.title("Upload Image") # Disabling warning st.set_option('deprecation.showfileUploaderEncoding', False) # Choose your own image uploaded_file = st.sidebar.file_uploader(" ", type=['png', 'jpg', 'jpeg']) if uploaded_file is not None: image = Image.open(uploaded_file) show = st.image(image, use_column_width=True) show.image(image, 'Uploaded Image', use_column_width=True) # For newline st.sidebar.write('\n') if st.sidebar.button("Click here to get image caption"): if uploaded_file is None: st.sidebar.write("Please upload an Image to Classify") else: with st.spinner('Generating image caption ...'): caption, tokens, token_ids = predict(image) st.success(f'caption: {caption}') st.success(f'tokens: {tokens}') st.success(f'token ids: {token_ids}') st.sidebar.header("ViT-GPT2 predicts:") st.sidebar.write(f"caption: {caption}", '\n')