Spaces:
Runtime error
Runtime error
Galuh Sahid
commited on
Commit
•
653217a
1
Parent(s):
588c4c1
Init
Browse files- README.md +1 -1
- app.py +117 -0
- flax_clip_vision_marian/__pycache__/configuration_clip_vision_marian.cpython-37.pyc +0 -0
- flax_clip_vision_marian/__pycache__/configuration_clip_vision_marian.cpython-38.pyc +0 -0
- flax_clip_vision_marian/__pycache__/generation_clip_vision_utils.cpython-37.pyc +0 -0
- flax_clip_vision_marian/__pycache__/generation_clip_vision_utils.cpython-38.pyc +0 -0
- flax_clip_vision_marian/__pycache__/modeling_clip_vision_marian.cpython-37.pyc +0 -0
- flax_clip_vision_marian/__pycache__/modeling_clip_vision_marian.cpython-38.pyc +0 -0
- flax_clip_vision_marian/__pycache__/modeling_clip_vision_utils.cpython-37.pyc +0 -0
- flax_clip_vision_marian/__pycache__/modeling_clip_vision_utils.cpython-38.pyc +0 -0
- flax_clip_vision_marian/configuration_clip_vision_marian.py +51 -0
- flax_clip_vision_marian/generation_clip_vision_utils.py +990 -0
- flax_clip_vision_marian/modeling_clip_vision_marian.py +776 -0
- flax_clip_vision_marian/modeling_clip_vision_utils.py +451 -0
- requirements.txt +13 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Indonesian Image Captioning
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: streamlit
|
|
|
1 |
---
|
2 |
title: Indonesian Image Captioning
|
3 |
+
emoji: 🖼️
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: streamlit
|
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
from PIL import Image
|
3 |
+
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize, ToTensor, Compose
|
4 |
+
from torchvision.transforms.functional import InterpolationMode
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from transformers import MarianTokenizer
|
8 |
+
from flax_clip_vision_marian.modeling_clip_vision_marian import FlaxCLIPVisionMarianForConditionalGeneration
|
9 |
+
import logging
|
10 |
+
import streamlit as st
|
11 |
+
from mtranslate import translate
|
12 |
+
|
13 |
+
class CaptionGenerator:
|
14 |
+
def __init__(self):
|
15 |
+
self.tokenizer = None
|
16 |
+
self.clip_marian_model = None
|
17 |
+
self.marian_model_name = 'Helsinki-NLP/opus-mt-en-id'
|
18 |
+
self.clip_marian_model_name = 'flax-community/Image-captioning-Indonesia'
|
19 |
+
|
20 |
+
self.config = None
|
21 |
+
self.image_size = None
|
22 |
+
self.custom_transforms = None
|
23 |
+
|
24 |
+
def load(self):
|
25 |
+
logging.info("Loading tokenizer...")
|
26 |
+
marian_model_name = 'Helsinki-NLP/opus-mt-en-id'
|
27 |
+
self.tokenizer = MarianTokenizer.from_pretrained(self.marian_model_name)
|
28 |
+
logging.info("Tokenizer loaded.")
|
29 |
+
|
30 |
+
logging.info("Loading model...")
|
31 |
+
self.model = FlaxCLIPVisionMarianForConditionalGeneration.from_pretrained(self.clip_marian_model_name)
|
32 |
+
logging.info("Model loaded.")
|
33 |
+
|
34 |
+
self.config = self.model.config
|
35 |
+
self.image_size = self.config.clip_vision_config.image_size
|
36 |
+
|
37 |
+
self.custom_transforms = torch.nn.Sequential(
|
38 |
+
Resize([self.image_size], interpolation=InterpolationMode.BICUBIC),
|
39 |
+
CenterCrop(self.image_size),
|
40 |
+
ConvertImageDtype(torch.float),
|
41 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
42 |
+
)
|
43 |
+
|
44 |
+
def process_image(self, file):
|
45 |
+
logging.info("Loading image...")
|
46 |
+
image_data = file.read()
|
47 |
+
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
48 |
+
loader = Compose([ToTensor()])
|
49 |
+
image = loader(input_image)
|
50 |
+
image = self.custom_transforms(image)
|
51 |
+
pixel_values = torch.stack([image]).permute(0, 2, 3, 1).numpy()
|
52 |
+
logging.info("Image loaded.")
|
53 |
+
|
54 |
+
return pixel_values
|
55 |
+
|
56 |
+
def generate_step(self, pixel_values, max_len, num_beams):
|
57 |
+
gen_kwargs = {"max_length": max_len , "num_beams": num_beams}
|
58 |
+
|
59 |
+
logging.info("Generating caption...")
|
60 |
+
output_ids = self.model.generate(pixel_values, **gen_kwargs)
|
61 |
+
token_ids = np.array(output_ids.sequences)[0]
|
62 |
+
caption = self.tokenizer.decode(token_ids)
|
63 |
+
logging.info("Caption generated.")
|
64 |
+
|
65 |
+
return caption
|
66 |
+
|
67 |
+
def get_caption(self, file, max_len, num_beams):
|
68 |
+
pixel_values = self.process_image(file)
|
69 |
+
|
70 |
+
generated_ids = self.generate_step(pixel_values, max_len, num_beams)
|
71 |
+
return generated_ids
|
72 |
+
|
73 |
+
@st.cache(allow_output_mutation=True)
|
74 |
+
def load_caption_generator():
|
75 |
+
generator = CaptionGenerator()
|
76 |
+
generator.load()
|
77 |
+
return generator
|
78 |
+
|
79 |
+
def main():
|
80 |
+
st.set_page_config(page_title="Indonesian Image Captioning Demo", page_icon="🖼️")
|
81 |
+
generator = load_caption_generator()
|
82 |
+
|
83 |
+
st.title("Indonesian Image Captioning Demo")
|
84 |
+
|
85 |
+
st.markdown(
|
86 |
+
"""Indonesian image captioning demo, trained on [CLIP](https://huggingface.co/transformers/model_doc/clip.html) and [Marian](https://huggingface.co/transformers/model_doc/marian.html). Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).
|
87 |
+
"""
|
88 |
+
)
|
89 |
+
|
90 |
+
st.sidebar.subheader("Configurable parameters")
|
91 |
+
|
92 |
+
max_len = st.sidebar.number_input(
|
93 |
+
"Maximum length",
|
94 |
+
value=8,
|
95 |
+
help="The maximum length of the sequence (caption) to be generated."
|
96 |
+
)
|
97 |
+
|
98 |
+
num_beams = st.sidebar.number_input(
|
99 |
+
"Number of beams",
|
100 |
+
value=4,
|
101 |
+
help="Number of beams for beam search. 1 means no beam search."
|
102 |
+
)
|
103 |
+
|
104 |
+
input_image = st.file_uploader("Insert image")
|
105 |
+
if st.button("Run"):
|
106 |
+
with st.spinner(text="Getting results..."):
|
107 |
+
if input_image:
|
108 |
+
caption = generator.get_caption(file=input_image, max_len=max_len, num_beams=num_beams)
|
109 |
+
st.subheader("Result")
|
110 |
+
st.write(caption.replace("<pad>", ""))
|
111 |
+
st.text("English translation")
|
112 |
+
st.write(translate(caption, "en", "id").replace("<pad>", ""))
|
113 |
+
else:
|
114 |
+
st.write("Please upload an image.")
|
115 |
+
|
116 |
+
if __name__ == '__main__':
|
117 |
+
main()
|
flax_clip_vision_marian/__pycache__/configuration_clip_vision_marian.cpython-37.pyc
ADDED
Binary file (1.65 kB). View file
|
|
flax_clip_vision_marian/__pycache__/configuration_clip_vision_marian.cpython-38.pyc
ADDED
Binary file (1.74 kB). View file
|
|
flax_clip_vision_marian/__pycache__/generation_clip_vision_utils.cpython-37.pyc
ADDED
Binary file (21.4 kB). View file
|
|
flax_clip_vision_marian/__pycache__/generation_clip_vision_utils.cpython-38.pyc
ADDED
Binary file (21.9 kB). View file
|
|
flax_clip_vision_marian/__pycache__/modeling_clip_vision_marian.cpython-37.pyc
ADDED
Binary file (15.2 kB). View file
|
|
flax_clip_vision_marian/__pycache__/modeling_clip_vision_marian.cpython-38.pyc
ADDED
Binary file (15.6 kB). View file
|
|
flax_clip_vision_marian/__pycache__/modeling_clip_vision_utils.cpython-37.pyc
ADDED
Binary file (16.4 kB). View file
|
|
flax_clip_vision_marian/__pycache__/modeling_clip_vision_utils.cpython-38.pyc
ADDED
Binary file (16.7 kB). View file
|
|
flax_clip_vision_marian/configuration_clip_vision_marian.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
from transformers import CLIPVisionConfig, MarianConfig
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class CLIPVisionMarianConfig(PretrainedConfig):
|
11 |
+
|
12 |
+
model_type = "clip-vision-marian"
|
13 |
+
is_composition = True
|
14 |
+
|
15 |
+
def __init__(self, **kwargs):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
|
18 |
+
if "marian_config" not in kwargs:
|
19 |
+
raise ValueError("`marian_config_dict` can not be `None`.")
|
20 |
+
|
21 |
+
if "clip_vision_config" not in kwargs:
|
22 |
+
raise ValueError("`clip_vision_config_dict` can not be `None`.")
|
23 |
+
|
24 |
+
marian_config = kwargs.pop("marian_config")
|
25 |
+
clip_vision_config = kwargs.pop("clip_vision_config")
|
26 |
+
|
27 |
+
self.marian_config = MarianConfig(**marian_config)
|
28 |
+
|
29 |
+
self.clip_vision_config = CLIPVisionConfig(**clip_vision_config)
|
30 |
+
|
31 |
+
self.is_encoder_decoder = True
|
32 |
+
|
33 |
+
@classmethod
|
34 |
+
def from_clip_vision_marian_configs(
|
35 |
+
cls,
|
36 |
+
clip_vision_config: PretrainedConfig,
|
37 |
+
marian_config: PretrainedConfig,
|
38 |
+
**kwargs
|
39 |
+
):
|
40 |
+
return cls(
|
41 |
+
clip_vision_config=clip_vision_config.to_dict(),
|
42 |
+
marian_config=marian_config.to_dict(),
|
43 |
+
**kwargs
|
44 |
+
)
|
45 |
+
|
46 |
+
def to_dict(self):
|
47 |
+
output = copy.deepcopy(self.__dict__)
|
48 |
+
output["clip_vision_config"] = self.clip_vision_config.to_dict()
|
49 |
+
output["marian_config"] = self.marian_config.to_dict()
|
50 |
+
output["model_type"] = self.__class__.model_type
|
51 |
+
return output
|
flax_clip_vision_marian/generation_clip_vision_utils.py
ADDED
@@ -0,0 +1,990 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional
|
2 |
+
|
3 |
+
import flax
|
4 |
+
import jax
|
5 |
+
import jax.numpy as jnp
|
6 |
+
import jaxlib.xla_extension as jax_xla
|
7 |
+
import numpy as np
|
8 |
+
from jax import lax
|
9 |
+
from transformers.file_utils import ModelOutput
|
10 |
+
from transformers.generation_flax_logits_process import (
|
11 |
+
FlaxForcedBOSTokenLogitsProcessor,
|
12 |
+
FlaxForcedEOSTokenLogitsProcessor,
|
13 |
+
FlaxLogitsProcessorList,
|
14 |
+
FlaxMinLengthLogitsProcessor,
|
15 |
+
FlaxTemperatureLogitsWarper,
|
16 |
+
FlaxTopKLogitsWarper,
|
17 |
+
FlaxTopPLogitsWarper,
|
18 |
+
)
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
@flax.struct.dataclass
|
25 |
+
class FlaxGreedySearchOutput(ModelOutput):
|
26 |
+
"""
|
27 |
+
Flax Base class for outputs of decoder-only generation models using greedy search.
|
28 |
+
Args:
|
29 |
+
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
|
30 |
+
The generated sequences.
|
31 |
+
"""
|
32 |
+
|
33 |
+
sequences: jax_xla.DeviceArray = None
|
34 |
+
|
35 |
+
|
36 |
+
@flax.struct.dataclass
|
37 |
+
class FlaxSampleOutput(ModelOutput):
|
38 |
+
"""
|
39 |
+
Flax Base class for outputs of decoder-only generation models using sampling.
|
40 |
+
Args:
|
41 |
+
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
|
42 |
+
The generated sequences.
|
43 |
+
"""
|
44 |
+
|
45 |
+
sequences: jax_xla.DeviceArray = None
|
46 |
+
|
47 |
+
|
48 |
+
@flax.struct.dataclass
|
49 |
+
class FlaxBeamSearchOutput(ModelOutput):
|
50 |
+
"""
|
51 |
+
Flax Base class for outputs of decoder-only generation models using greedy search.
|
52 |
+
Args:
|
53 |
+
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
|
54 |
+
The generated sequences.
|
55 |
+
scores (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size,)`):
|
56 |
+
The scores (log probabilites) of the generated sequences.
|
57 |
+
"""
|
58 |
+
|
59 |
+
sequences: jax_xla.DeviceArray = None
|
60 |
+
scores: jax_xla.DeviceArray = None
|
61 |
+
|
62 |
+
|
63 |
+
@flax.struct.dataclass
|
64 |
+
class GreedyState:
|
65 |
+
cur_len: jax_xla.DeviceArray
|
66 |
+
sequences: jax_xla.DeviceArray
|
67 |
+
running_token: jax_xla.DeviceArray
|
68 |
+
is_sent_finished: jax_xla.DeviceArray
|
69 |
+
model_kwargs: Dict[str, jax_xla.DeviceArray]
|
70 |
+
|
71 |
+
|
72 |
+
@flax.struct.dataclass
|
73 |
+
class SampleState:
|
74 |
+
cur_len: jax_xla.DeviceArray
|
75 |
+
sequences: jax_xla.DeviceArray
|
76 |
+
running_token: jax_xla.DeviceArray
|
77 |
+
is_sent_finished: jax_xla.DeviceArray
|
78 |
+
prng_key: jax_xla.DeviceArray
|
79 |
+
model_kwargs: Dict[str, jax_xla.DeviceArray]
|
80 |
+
|
81 |
+
|
82 |
+
@flax.struct.dataclass
|
83 |
+
class BeamSearchState:
|
84 |
+
cur_len: jax_xla.DeviceArray
|
85 |
+
running_sequences: jax_xla.DeviceArray
|
86 |
+
running_scores: jax_xla.DeviceArray
|
87 |
+
sequences: jax_xla.DeviceArray
|
88 |
+
scores: jax_xla.DeviceArray
|
89 |
+
is_sent_finished: jax_xla.DeviceArray
|
90 |
+
model_kwargs: Dict[str, jax_xla.DeviceArray]
|
91 |
+
|
92 |
+
|
93 |
+
class FlaxCLIPVisionMarianGenerationMixin:
|
94 |
+
"""
|
95 |
+
A class containing all of the functions supporting generation, to be used as a mixin in
|
96 |
+
:class:`~transformers.FlaxPreTrainedModel`.
|
97 |
+
"""
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def _run_loop_in_debug(cond_fn, body_fn, init_state):
|
101 |
+
"""
|
102 |
+
Run generation in untraced mode. This should only be used for debugging purposes.
|
103 |
+
"""
|
104 |
+
state = init_state
|
105 |
+
while cond_fn(state):
|
106 |
+
state = body_fn(state)
|
107 |
+
return state
|
108 |
+
|
109 |
+
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, model_kwargs):
|
110 |
+
encoder_kwargs = {
|
111 |
+
argument: value
|
112 |
+
for argument, value in model_kwargs.items()
|
113 |
+
if not (
|
114 |
+
argument.startswith("decoder_") or argument.startswith("cross_attn")
|
115 |
+
)
|
116 |
+
}
|
117 |
+
model_kwargs["encoder_outputs"] = self.encode(
|
118 |
+
input_ids, return_dict=True, **encoder_kwargs
|
119 |
+
)
|
120 |
+
return model_kwargs
|
121 |
+
|
122 |
+
@staticmethod
|
123 |
+
def _expand_to_num_beams(tensor, num_beams):
|
124 |
+
return jnp.broadcast_to(
|
125 |
+
tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:]
|
126 |
+
)
|
127 |
+
|
128 |
+
def generate(
|
129 |
+
self,
|
130 |
+
input_ids: jax_xla.DeviceArray,
|
131 |
+
max_length: Optional[int] = None,
|
132 |
+
pad_token_id: Optional[int] = None,
|
133 |
+
bos_token_id: Optional[int] = None,
|
134 |
+
eos_token_id: Optional[int] = None,
|
135 |
+
decoder_start_token_id: Optional[int] = None,
|
136 |
+
do_sample: Optional[bool] = None,
|
137 |
+
prng_key: Optional[jax_xla.DeviceArray] = None,
|
138 |
+
top_k: Optional[int] = None,
|
139 |
+
top_p: Optional[float] = None,
|
140 |
+
temperature: Optional[float] = None,
|
141 |
+
num_beams: Optional[int] = None,
|
142 |
+
no_repeat_ngram_size: Optional[int] = None,
|
143 |
+
min_length: Optional[int] = None,
|
144 |
+
forced_bos_token_id: Optional[int] = None,
|
145 |
+
forced_eos_token_id: Optional[int] = None,
|
146 |
+
length_penalty: Optional[float] = None,
|
147 |
+
early_stopping: Optional[bool] = None,
|
148 |
+
trace: bool = True,
|
149 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
150 |
+
**model_kwargs,
|
151 |
+
):
|
152 |
+
r"""
|
153 |
+
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
|
154 |
+
and, multinomial sampling.
|
155 |
+
Apart from :obj:`input_ids`, all the arguments below will default to the value of the attribute of the same
|
156 |
+
name inside the :class:`~transformers.PretrainedConfig` of the model. The default values indicated are the
|
157 |
+
default values of those config.
|
158 |
+
Most of these parameters are explained in more detail in `this blog post
|
159 |
+
<https://huggingface.co/blog/how-to-generate>`__.
|
160 |
+
Parameters:
|
161 |
+
input_ids (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
162 |
+
The sequence used as a prompt for the generation.
|
163 |
+
max_length (:obj:`int`, `optional`, defaults to 20):
|
164 |
+
The maximum length of the sequence to be generated.
|
165 |
+
do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
166 |
+
Whether or not to use sampling ; use greedy decoding otherwise.
|
167 |
+
temperature (:obj:`float`, `optional`, defaults to 1.0):
|
168 |
+
The value used to module the next token probabilities.
|
169 |
+
top_k (:obj:`int`, `optional`, defaults to 50):
|
170 |
+
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
171 |
+
top_p (:obj:`float`, `optional`, defaults to 1.0):
|
172 |
+
If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or
|
173 |
+
higher are kept for generation.
|
174 |
+
pad_token_id (:obj:`int`, `optional`):
|
175 |
+
The id of the `padding` token.
|
176 |
+
bos_token_id (:obj:`int`, `optional`):
|
177 |
+
The id of the `beginning-of-sequence` token.
|
178 |
+
eos_token_id (:obj:`int`, `optional`):
|
179 |
+
The id of the `end-of-sequence` token.
|
180 |
+
num_beams (:obj:`int`, `optional`, defaults to 1):
|
181 |
+
Number of beams for beam search. 1 means no beam search.
|
182 |
+
decoder_start_token_id (:obj:`int`, `optional`):
|
183 |
+
If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
|
184 |
+
trace (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
185 |
+
Whether to trace generation. Setting ``trace=False`` should only be used for debugging and will lead to
|
186 |
+
a considerably slower runtime.
|
187 |
+
params (:obj:`Dict[str, jax_xla.DeviceArray]`, `optional`):
|
188 |
+
Optionally the model parameters can be passed. Can be useful for parallelized generation.
|
189 |
+
model_kwargs:
|
190 |
+
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.
|
191 |
+
Return:
|
192 |
+
:class:`~transformers.file_utils.ModelOutput`.
|
193 |
+
Examples::
|
194 |
+
>>> from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
|
195 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
196 |
+
>>> model = FlaxAutoModelForCausalLM.from_pretrained("distilgpt2")
|
197 |
+
>>> input_context = "The dog"
|
198 |
+
>>> # encode input context
|
199 |
+
>>> input_ids = tokenizer(input_context, return_tensors="jax").input_ids
|
200 |
+
>>> # generate candidates using sampling
|
201 |
+
>>> outputs = model.generate(input_ids=input_ids, max_length=20, top_k=30, do_sample=True)
|
202 |
+
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
203 |
+
"""
|
204 |
+
# set init values
|
205 |
+
max_length = (
|
206 |
+
max_length
|
207 |
+
if max_length is not None
|
208 |
+
else self.config.marian_config.max_length
|
209 |
+
)
|
210 |
+
bos_token_id = (
|
211 |
+
bos_token_id
|
212 |
+
if bos_token_id is not None
|
213 |
+
else self.config.marian_config.bos_token_id
|
214 |
+
)
|
215 |
+
pad_token_id = (
|
216 |
+
pad_token_id
|
217 |
+
if pad_token_id is not None
|
218 |
+
else self.config.marian_config.pad_token_id
|
219 |
+
)
|
220 |
+
eos_token_id = (
|
221 |
+
eos_token_id
|
222 |
+
if eos_token_id is not None
|
223 |
+
else self.config.marian_config.eos_token_id
|
224 |
+
)
|
225 |
+
decoder_start_token_id = (
|
226 |
+
decoder_start_token_id
|
227 |
+
if decoder_start_token_id
|
228 |
+
else self.config.marian_config.decoder_start_token_id
|
229 |
+
)
|
230 |
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
231 |
+
|
232 |
+
if decoder_start_token_id is None and self.config.is_encoder_decoder:
|
233 |
+
raise ValueError(
|
234 |
+
"`decoder_start_token_id` has to be defined for encoder-decoder generation."
|
235 |
+
)
|
236 |
+
|
237 |
+
if self.config.is_encoder_decoder:
|
238 |
+
# add encoder_outputs to model_kwargs
|
239 |
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
240 |
+
input_ids, model_kwargs
|
241 |
+
)
|
242 |
+
# prepare decoder_input_ids for generation
|
243 |
+
input_ids = (
|
244 |
+
jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
245 |
+
)
|
246 |
+
|
247 |
+
do_sample = (
|
248 |
+
do_sample if do_sample is not None else self.config.marian_config.do_sample
|
249 |
+
)
|
250 |
+
num_beams = (
|
251 |
+
num_beams if num_beams is not None else self.config.marian_config.num_beams
|
252 |
+
)
|
253 |
+
|
254 |
+
if not do_sample and num_beams == 1:
|
255 |
+
logits_processor = self._get_logits_processor(
|
256 |
+
no_repeat_ngram_size,
|
257 |
+
min_length,
|
258 |
+
max_length,
|
259 |
+
eos_token_id,
|
260 |
+
forced_bos_token_id,
|
261 |
+
forced_eos_token_id,
|
262 |
+
)
|
263 |
+
return self._greedy_search(
|
264 |
+
input_ids,
|
265 |
+
max_length,
|
266 |
+
pad_token_id,
|
267 |
+
eos_token_id,
|
268 |
+
logits_processor=logits_processor,
|
269 |
+
trace=trace,
|
270 |
+
params=params,
|
271 |
+
model_kwargs=model_kwargs,
|
272 |
+
)
|
273 |
+
elif do_sample and num_beams == 1:
|
274 |
+
logits_warper = self._get_logits_warper(
|
275 |
+
top_k=top_k, top_p=top_p, temperature=temperature
|
276 |
+
)
|
277 |
+
logits_processor = self._get_logits_processor(
|
278 |
+
no_repeat_ngram_size,
|
279 |
+
min_length,
|
280 |
+
max_length,
|
281 |
+
eos_token_id,
|
282 |
+
forced_bos_token_id,
|
283 |
+
forced_eos_token_id,
|
284 |
+
)
|
285 |
+
return self._sample(
|
286 |
+
input_ids,
|
287 |
+
max_length,
|
288 |
+
pad_token_id,
|
289 |
+
eos_token_id,
|
290 |
+
prng_key,
|
291 |
+
logits_warper=logits_warper,
|
292 |
+
logits_processor=logits_processor,
|
293 |
+
trace=trace,
|
294 |
+
params=params,
|
295 |
+
model_kwargs=model_kwargs,
|
296 |
+
)
|
297 |
+
elif not do_sample and num_beams > 1:
|
298 |
+
# broadcast input_ids & encoder_outputs
|
299 |
+
input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams)
|
300 |
+
|
301 |
+
if "encoder_outputs" in model_kwargs:
|
302 |
+
model_kwargs["encoder_outputs"][
|
303 |
+
"last_hidden_state"
|
304 |
+
] = self._expand_to_num_beams(
|
305 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"],
|
306 |
+
num_beams=num_beams,
|
307 |
+
)
|
308 |
+
|
309 |
+
if "attention_mask" in model_kwargs:
|
310 |
+
model_kwargs["attention_mask"] = self._expand_to_num_beams(
|
311 |
+
model_kwargs["attention_mask"], num_beams=num_beams
|
312 |
+
)
|
313 |
+
|
314 |
+
logits_processor = self._get_logits_processor(
|
315 |
+
no_repeat_ngram_size,
|
316 |
+
min_length,
|
317 |
+
max_length,
|
318 |
+
eos_token_id,
|
319 |
+
forced_bos_token_id,
|
320 |
+
forced_eos_token_id,
|
321 |
+
)
|
322 |
+
|
323 |
+
return self._beam_search(
|
324 |
+
input_ids,
|
325 |
+
max_length,
|
326 |
+
pad_token_id,
|
327 |
+
eos_token_id,
|
328 |
+
length_penalty=length_penalty,
|
329 |
+
early_stopping=early_stopping,
|
330 |
+
logits_processor=logits_processor,
|
331 |
+
trace=trace,
|
332 |
+
params=params,
|
333 |
+
model_kwargs=model_kwargs,
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
raise NotImplementedError("`Beam sampling is currently not implemented.")
|
337 |
+
|
338 |
+
def _get_logits_warper(
|
339 |
+
self, top_k: int = None, top_p: float = None, temperature: float = None
|
340 |
+
) -> FlaxLogitsProcessorList:
|
341 |
+
"""
|
342 |
+
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
343 |
+
:obj:`~transformers.FlaxLogitsWarper` instances used for multinomial sampling.
|
344 |
+
"""
|
345 |
+
|
346 |
+
# init warp parameters
|
347 |
+
top_k = top_k if top_k is not None else self.config.marian_config.top_k
|
348 |
+
top_p = top_p if top_p is not None else self.config.marian_config.top_p
|
349 |
+
temperature = (
|
350 |
+
temperature
|
351 |
+
if temperature is not None
|
352 |
+
else self.config.marian_config.temperature
|
353 |
+
)
|
354 |
+
# instantiate warpers list
|
355 |
+
warpers = FlaxLogitsProcessorList()
|
356 |
+
|
357 |
+
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
358 |
+
# all samplers can be found in `generation_utils_samplers.py`
|
359 |
+
if temperature is not None and temperature != 1.0:
|
360 |
+
warpers.append(FlaxTemperatureLogitsWarper(temperature))
|
361 |
+
if top_k is not None and top_k != 0:
|
362 |
+
warpers.append(FlaxTopKLogitsWarper(top_k=top_k, min_tokens_to_keep=1))
|
363 |
+
if top_p is not None and top_p < 1.0:
|
364 |
+
warpers.append(FlaxTopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1))
|
365 |
+
|
366 |
+
return warpers
|
367 |
+
|
368 |
+
def _get_logits_processor(
|
369 |
+
self,
|
370 |
+
no_repeat_ngram_size: int,
|
371 |
+
min_length: int,
|
372 |
+
max_length: int,
|
373 |
+
eos_token_id: int,
|
374 |
+
forced_bos_token_id: int,
|
375 |
+
forced_eos_token_id: int,
|
376 |
+
) -> FlaxLogitsProcessorList:
|
377 |
+
"""
|
378 |
+
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
|
379 |
+
:obj:`~transformers.FlaxLogitsProcessor` instances used to modify the scores of the language model head.
|
380 |
+
"""
|
381 |
+
processors = FlaxLogitsProcessorList()
|
382 |
+
|
383 |
+
# init warp parameters
|
384 |
+
no_repeat_ngram_size = (
|
385 |
+
no_repeat_ngram_size
|
386 |
+
if no_repeat_ngram_size is not None
|
387 |
+
else self.config.marian_config.no_repeat_ngram_size
|
388 |
+
)
|
389 |
+
min_length = (
|
390 |
+
min_length
|
391 |
+
if min_length is not None
|
392 |
+
else self.config.marian_config.min_length
|
393 |
+
)
|
394 |
+
eos_token_id = (
|
395 |
+
eos_token_id
|
396 |
+
if eos_token_id is not None
|
397 |
+
else self.config.marian_config.eos_token_id
|
398 |
+
)
|
399 |
+
forced_bos_token_id = (
|
400 |
+
forced_bos_token_id
|
401 |
+
if forced_bos_token_id is not None
|
402 |
+
else self.config.marian_config.forced_bos_token_id
|
403 |
+
)
|
404 |
+
forced_eos_token_id = (
|
405 |
+
forced_eos_token_id
|
406 |
+
if forced_eos_token_id is not None
|
407 |
+
else self.config.marian_config.forced_eos_token_id
|
408 |
+
)
|
409 |
+
|
410 |
+
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
411 |
+
# all samplers can be found in `generation_utils_samplers.py`
|
412 |
+
if min_length is not None and eos_token_id is not None and min_length > -1:
|
413 |
+
processors.append(FlaxMinLengthLogitsProcessor(min_length, eos_token_id))
|
414 |
+
if forced_bos_token_id is not None:
|
415 |
+
processors.append(FlaxForcedBOSTokenLogitsProcessor(forced_bos_token_id))
|
416 |
+
if forced_eos_token_id is not None:
|
417 |
+
processors.append(
|
418 |
+
FlaxForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)
|
419 |
+
)
|
420 |
+
return processors
|
421 |
+
|
422 |
+
def _greedy_search(
|
423 |
+
self,
|
424 |
+
input_ids: None,
|
425 |
+
max_length: Optional[int] = None,
|
426 |
+
pad_token_id: Optional[int] = None,
|
427 |
+
eos_token_id: Optional[int] = None,
|
428 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
429 |
+
trace: bool = True,
|
430 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
431 |
+
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
432 |
+
):
|
433 |
+
# init values
|
434 |
+
max_length = (
|
435 |
+
max_length
|
436 |
+
if max_length is not None
|
437 |
+
else self.config.marian_config.max_length
|
438 |
+
)
|
439 |
+
pad_token_id = (
|
440 |
+
pad_token_id
|
441 |
+
if pad_token_id is not None
|
442 |
+
else self.config.marian_config.pad_token_id
|
443 |
+
)
|
444 |
+
eos_token_id = (
|
445 |
+
eos_token_id
|
446 |
+
if eos_token_id is not None
|
447 |
+
else self.config.marian_config.eos_token_id
|
448 |
+
)
|
449 |
+
|
450 |
+
batch_size, cur_len = input_ids.shape
|
451 |
+
|
452 |
+
eos_token_id = jnp.array(eos_token_id)
|
453 |
+
pad_token_id = jnp.array(pad_token_id)
|
454 |
+
cur_len = jnp.array(cur_len)
|
455 |
+
|
456 |
+
# per batch-item holding current token in loop.
|
457 |
+
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
|
458 |
+
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
|
459 |
+
|
460 |
+
# per batch-item state bit indicating if sentence has finished.
|
461 |
+
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
|
462 |
+
|
463 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
464 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
465 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
466 |
+
# initialize model specific kwargs
|
467 |
+
model_kwargs = self.prepare_inputs_for_generation(
|
468 |
+
input_ids, max_length, **model_kwargs
|
469 |
+
)
|
470 |
+
|
471 |
+
# initialize state
|
472 |
+
state = GreedyState(
|
473 |
+
cur_len=cur_len,
|
474 |
+
sequences=sequences,
|
475 |
+
running_token=input_ids,
|
476 |
+
is_sent_finished=is_sent_finished,
|
477 |
+
model_kwargs=model_kwargs,
|
478 |
+
)
|
479 |
+
|
480 |
+
def greedy_search_cond_fn(state):
|
481 |
+
"""state termination condition fn."""
|
482 |
+
has_reached_max_length = state.cur_len == max_length
|
483 |
+
all_sequence_finished = jnp.all(state.is_sent_finished)
|
484 |
+
finish_generation = jnp.logical_or(
|
485 |
+
has_reached_max_length, all_sequence_finished
|
486 |
+
)
|
487 |
+
return ~finish_generation
|
488 |
+
|
489 |
+
def greedy_search_body_fn(state):
|
490 |
+
"""state update fn."""
|
491 |
+
model_outputs = model(
|
492 |
+
state.running_token, params=params, **state.model_kwargs
|
493 |
+
)
|
494 |
+
logits = model_outputs.logits[:, -1]
|
495 |
+
|
496 |
+
# apply min_length, ...
|
497 |
+
logits = logits_processor(state.sequences, logits, state.cur_len)
|
498 |
+
|
499 |
+
next_token = jnp.argmax(logits, axis=-1)
|
500 |
+
|
501 |
+
next_is_sent_finished = state.is_sent_finished | (
|
502 |
+
next_token == eos_token_id
|
503 |
+
)
|
504 |
+
next_token = (
|
505 |
+
next_token * ~next_is_sent_finished
|
506 |
+
+ pad_token_id * next_is_sent_finished
|
507 |
+
)
|
508 |
+
next_token = next_token[:, None]
|
509 |
+
|
510 |
+
next_sequences = lax.dynamic_update_slice(
|
511 |
+
state.sequences, next_token, (0, state.cur_len)
|
512 |
+
)
|
513 |
+
next_model_kwargs = self.update_inputs_for_generation(
|
514 |
+
model_outputs, state.model_kwargs
|
515 |
+
)
|
516 |
+
return GreedyState(
|
517 |
+
cur_len=state.cur_len + 1,
|
518 |
+
sequences=next_sequences,
|
519 |
+
running_token=next_token,
|
520 |
+
is_sent_finished=next_is_sent_finished,
|
521 |
+
model_kwargs=next_model_kwargs,
|
522 |
+
)
|
523 |
+
|
524 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
525 |
+
if input_ids.shape[1] > 1:
|
526 |
+
state = greedy_search_body_fn(state)
|
527 |
+
|
528 |
+
if not trace:
|
529 |
+
state = self._run_loop_in_debug(
|
530 |
+
greedy_search_cond_fn, greedy_search_body_fn, state
|
531 |
+
)
|
532 |
+
else:
|
533 |
+
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state)
|
534 |
+
|
535 |
+
return FlaxGreedySearchOutput(sequences=state.sequences)
|
536 |
+
|
537 |
+
def _sample(
|
538 |
+
self,
|
539 |
+
input_ids: None,
|
540 |
+
max_length: Optional[int] = None,
|
541 |
+
pad_token_id: Optional[int] = None,
|
542 |
+
eos_token_id: Optional[int] = None,
|
543 |
+
prng_key: Optional[jax_xla.DeviceArray] = None,
|
544 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
545 |
+
logits_warper: Optional[FlaxLogitsProcessorList] = None,
|
546 |
+
trace: bool = True,
|
547 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
548 |
+
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
549 |
+
):
|
550 |
+
# init values
|
551 |
+
max_length = (
|
552 |
+
max_length
|
553 |
+
if max_length is not None
|
554 |
+
else self.config.marian_config.max_length
|
555 |
+
)
|
556 |
+
pad_token_id = (
|
557 |
+
pad_token_id
|
558 |
+
if pad_token_id is not None
|
559 |
+
else self.config.marian_config.pad_token_id
|
560 |
+
)
|
561 |
+
eos_token_id = (
|
562 |
+
eos_token_id
|
563 |
+
if eos_token_id is not None
|
564 |
+
else self.config.marian_config.eos_token_id
|
565 |
+
)
|
566 |
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
567 |
+
|
568 |
+
batch_size, cur_len = input_ids.shape
|
569 |
+
|
570 |
+
eos_token_id = jnp.array(eos_token_id)
|
571 |
+
pad_token_id = jnp.array(pad_token_id)
|
572 |
+
cur_len = jnp.array(cur_len)
|
573 |
+
|
574 |
+
# per batch-item holding current token in loop.
|
575 |
+
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
|
576 |
+
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
|
577 |
+
|
578 |
+
# per batch-item state bit indicating if sentence has finished.
|
579 |
+
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
|
580 |
+
|
581 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
582 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
583 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
584 |
+
|
585 |
+
# initialize model specific kwargs
|
586 |
+
model_kwargs = self.prepare_inputs_for_generation(
|
587 |
+
input_ids, max_length, **model_kwargs
|
588 |
+
)
|
589 |
+
|
590 |
+
# initialize state
|
591 |
+
state = SampleState(
|
592 |
+
cur_len=cur_len,
|
593 |
+
sequences=sequences,
|
594 |
+
running_token=input_ids,
|
595 |
+
is_sent_finished=is_sent_finished,
|
596 |
+
prng_key=prng_key,
|
597 |
+
model_kwargs=model_kwargs,
|
598 |
+
)
|
599 |
+
|
600 |
+
def sample_search_cond_fn(state):
|
601 |
+
"""state termination condition fn."""
|
602 |
+
has_reached_max_length = state.cur_len == max_length
|
603 |
+
all_sequence_finished = jnp.all(state.is_sent_finished)
|
604 |
+
finish_generation = jnp.logical_or(
|
605 |
+
has_reached_max_length, all_sequence_finished
|
606 |
+
)
|
607 |
+
return ~finish_generation
|
608 |
+
|
609 |
+
def sample_search_body_fn(state):
|
610 |
+
"""state update fn."""
|
611 |
+
prng_key, prng_key_next = jax.random.split(state.prng_key)
|
612 |
+
model_outputs = model(
|
613 |
+
state.running_token, params=params, **state.model_kwargs
|
614 |
+
)
|
615 |
+
|
616 |
+
logits = model_outputs.logits[:, -1]
|
617 |
+
|
618 |
+
# apply min_length, ...
|
619 |
+
logits = logits_processor(state.sequences, logits, state.cur_len)
|
620 |
+
# apply top_k, top_k, temperature
|
621 |
+
logits = logits_warper(logits, logits, state.cur_len)
|
622 |
+
|
623 |
+
next_token = jax.random.categorical(
|
624 |
+
prng_key, model_outputs.logits[:, -1], axis=-1
|
625 |
+
)
|
626 |
+
|
627 |
+
next_is_sent_finished = state.is_sent_finished | (
|
628 |
+
next_token == eos_token_id
|
629 |
+
)
|
630 |
+
next_token = (
|
631 |
+
next_token * ~next_is_sent_finished
|
632 |
+
+ pad_token_id * next_is_sent_finished
|
633 |
+
)
|
634 |
+
next_token = next_token[:, None]
|
635 |
+
|
636 |
+
next_sequences = lax.dynamic_update_slice(
|
637 |
+
state.sequences, next_token, (0, state.cur_len)
|
638 |
+
)
|
639 |
+
next_model_kwargs = self.update_inputs_for_generation(
|
640 |
+
model_outputs, state.model_kwargs
|
641 |
+
)
|
642 |
+
|
643 |
+
return SampleState(
|
644 |
+
cur_len=state.cur_len + 1,
|
645 |
+
sequences=next_sequences,
|
646 |
+
running_token=next_token,
|
647 |
+
is_sent_finished=next_is_sent_finished,
|
648 |
+
model_kwargs=next_model_kwargs,
|
649 |
+
prng_key=prng_key_next,
|
650 |
+
)
|
651 |
+
|
652 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
653 |
+
if input_ids.shape[1] > 1:
|
654 |
+
state = sample_search_body_fn(state)
|
655 |
+
|
656 |
+
if not trace:
|
657 |
+
state = self._run_loop_in_debug(
|
658 |
+
sample_search_cond_fn, sample_search_body_fn, state
|
659 |
+
)
|
660 |
+
else:
|
661 |
+
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
|
662 |
+
|
663 |
+
return FlaxSampleOutput(sequences=state.sequences)
|
664 |
+
|
665 |
+
def _beam_search(
|
666 |
+
self,
|
667 |
+
input_ids: None,
|
668 |
+
max_length: Optional[int] = None,
|
669 |
+
pad_token_id: Optional[int] = None,
|
670 |
+
eos_token_id: Optional[int] = None,
|
671 |
+
length_penalty: Optional[float] = None,
|
672 |
+
early_stopping: Optional[bool] = None,
|
673 |
+
logits_processor: Optional[FlaxLogitsProcessorList] = None,
|
674 |
+
trace: bool = True,
|
675 |
+
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
676 |
+
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
|
677 |
+
):
|
678 |
+
"""
|
679 |
+
This beam search function is heavily inspired by Flax's official example:
|
680 |
+
https://github.com/google/flax/blob/master/examples/wmt/train.py#L254
|
681 |
+
"""
|
682 |
+
|
683 |
+
def flatten_beam_dim(tensor):
|
684 |
+
"""Flattens the first two dimensions of a non-scalar array."""
|
685 |
+
# ignore scalars (e.g. cache index)
|
686 |
+
if tensor.ndim == 0:
|
687 |
+
return tensor
|
688 |
+
return tensor.reshape(
|
689 |
+
(tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]
|
690 |
+
)
|
691 |
+
|
692 |
+
def unflatten_beam_dim(tensor, batch_size, num_beams):
|
693 |
+
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
|
694 |
+
# ignore scalars (e.g. cache index)
|
695 |
+
if tensor.ndim == 0:
|
696 |
+
return tensor
|
697 |
+
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:])
|
698 |
+
|
699 |
+
def gather_beams(nested, beam_indices, batch_size, new_num_beams):
|
700 |
+
"""
|
701 |
+
Gathers the beam slices indexed by beam_indices into new beam array.
|
702 |
+
"""
|
703 |
+
batch_indices = jnp.reshape(
|
704 |
+
jnp.arange(batch_size * new_num_beams) // new_num_beams,
|
705 |
+
(batch_size, new_num_beams),
|
706 |
+
)
|
707 |
+
|
708 |
+
def gather_fn(tensor):
|
709 |
+
# ignore scalars (e.g. cache index)
|
710 |
+
if tensor.ndim == 0:
|
711 |
+
return tensor
|
712 |
+
else:
|
713 |
+
return tensor[batch_indices, beam_indices]
|
714 |
+
|
715 |
+
return jax.tree_map(gather_fn, nested)
|
716 |
+
|
717 |
+
# init values
|
718 |
+
max_length = (
|
719 |
+
max_length
|
720 |
+
if max_length is not None
|
721 |
+
else self.config.marian_config.max_length
|
722 |
+
)
|
723 |
+
pad_token_id = (
|
724 |
+
pad_token_id
|
725 |
+
if pad_token_id is not None
|
726 |
+
else self.config.marian_config.pad_token_id
|
727 |
+
)
|
728 |
+
eos_token_id = (
|
729 |
+
eos_token_id
|
730 |
+
if eos_token_id is not None
|
731 |
+
else self.config.marian_config.eos_token_id
|
732 |
+
)
|
733 |
+
length_penalty = (
|
734 |
+
length_penalty
|
735 |
+
if length_penalty is not None
|
736 |
+
else self.config.marian_config.length_penalty
|
737 |
+
)
|
738 |
+
early_stopping = (
|
739 |
+
early_stopping
|
740 |
+
if early_stopping is not None
|
741 |
+
else self.config.marian_config.early_stopping
|
742 |
+
)
|
743 |
+
|
744 |
+
batch_size, num_beams, cur_len = input_ids.shape
|
745 |
+
|
746 |
+
eos_token_id = jnp.array(eos_token_id)
|
747 |
+
pad_token_id = jnp.array(pad_token_id)
|
748 |
+
cur_len = jnp.array(cur_len)
|
749 |
+
|
750 |
+
# per batch,beam-item holding current token in loop.
|
751 |
+
sequences = jnp.full(
|
752 |
+
(batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32
|
753 |
+
)
|
754 |
+
running_sequences = jnp.full(
|
755 |
+
(batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32
|
756 |
+
)
|
757 |
+
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0))
|
758 |
+
|
759 |
+
# per batch,beam-item state bit indicating if sentence has finished.
|
760 |
+
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_)
|
761 |
+
|
762 |
+
# per batch,beam-item score, logprobs
|
763 |
+
running_scores = jnp.tile(
|
764 |
+
jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1]
|
765 |
+
)
|
766 |
+
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7)
|
767 |
+
|
768 |
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
769 |
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
770 |
+
model = self.decode if self.config.is_encoder_decoder else self
|
771 |
+
|
772 |
+
# flatten beam dim
|
773 |
+
if "encoder_outputs" in model_kwargs:
|
774 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
|
775 |
+
model_kwargs["encoder_outputs"]["last_hidden_state"]
|
776 |
+
)
|
777 |
+
if "attention_mask" in model_kwargs:
|
778 |
+
model_kwargs["attention_mask"] = flatten_beam_dim(
|
779 |
+
model_kwargs["attention_mask"]
|
780 |
+
)
|
781 |
+
|
782 |
+
# initialize model specific kwargs
|
783 |
+
model_kwargs = self.prepare_inputs_for_generation(
|
784 |
+
flatten_beam_dim(input_ids), max_length, **model_kwargs
|
785 |
+
)
|
786 |
+
|
787 |
+
# initialize state
|
788 |
+
state = BeamSearchState(
|
789 |
+
cur_len=cur_len,
|
790 |
+
running_sequences=running_sequences,
|
791 |
+
running_scores=running_scores,
|
792 |
+
sequences=sequences,
|
793 |
+
scores=scores,
|
794 |
+
is_sent_finished=is_sent_finished,
|
795 |
+
model_kwargs=model_kwargs,
|
796 |
+
)
|
797 |
+
|
798 |
+
def beam_search_cond_fn(state):
|
799 |
+
"""beam search state termination condition fn."""
|
800 |
+
|
801 |
+
# 1. is less than max length?
|
802 |
+
not_max_length_yet = state.cur_len < max_length
|
803 |
+
|
804 |
+
# 2. can the new beams still improve?
|
805 |
+
best_running_score = state.running_scores[:, -1:] / (
|
806 |
+
max_length ** length_penalty
|
807 |
+
)
|
808 |
+
worst_finished_score = jnp.where(
|
809 |
+
state.is_sent_finished,
|
810 |
+
jnp.min(state.scores, axis=1, keepdims=True),
|
811 |
+
np.array(-1.0e7),
|
812 |
+
)
|
813 |
+
improvement_still_possible = jnp.all(
|
814 |
+
worst_finished_score < best_running_score
|
815 |
+
)
|
816 |
+
|
817 |
+
# 3. is there still a beam that has not finished?
|
818 |
+
still_open_beam = ~(jnp.all(state.is_sent_finished) & early_stopping)
|
819 |
+
|
820 |
+
return not_max_length_yet & still_open_beam & improvement_still_possible
|
821 |
+
|
822 |
+
def beam_search_body_fn(state):
|
823 |
+
"""beam search state update fn."""
|
824 |
+
# 1. Forward current tokens
|
825 |
+
# Collect the current position slice along length to feed the fast
|
826 |
+
# autoregressive decoder model. Flatten the beam dimension into batch
|
827 |
+
# dimension for feeding into the model.
|
828 |
+
# unflatten beam dimension
|
829 |
+
# Unflatten beam dimension in attention cache arrays
|
830 |
+
input_token = flatten_beam_dim(
|
831 |
+
lax.dynamic_slice(
|
832 |
+
state.running_sequences,
|
833 |
+
(0, 0, state.cur_len - 1),
|
834 |
+
(batch_size, num_beams, 1),
|
835 |
+
)
|
836 |
+
)
|
837 |
+
model_outputs = model(input_token, params=params, **state.model_kwargs)
|
838 |
+
logits = unflatten_beam_dim(
|
839 |
+
model_outputs.logits[:, 0], batch_size, num_beams
|
840 |
+
)
|
841 |
+
cache = jax.tree_map(
|
842 |
+
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams),
|
843 |
+
model_outputs.past_key_values,
|
844 |
+
)
|
845 |
+
|
846 |
+
# 2. Compute log probs
|
847 |
+
# get log probabilities from logits,
|
848 |
+
# process logits with processors (*e.g.* min_length, ...), and
|
849 |
+
# add new logprobs to existing running logprobs scores.
|
850 |
+
log_probs = jax.nn.log_softmax(logits)
|
851 |
+
log_probs = logits_processor(
|
852 |
+
flatten_beam_dim(running_sequences),
|
853 |
+
flatten_beam_dim(log_probs),
|
854 |
+
state.cur_len,
|
855 |
+
)
|
856 |
+
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams)
|
857 |
+
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2)
|
858 |
+
vocab_size = log_probs.shape[2]
|
859 |
+
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size))
|
860 |
+
|
861 |
+
# 3. Retrieve top-K
|
862 |
+
# Each item in batch has num_beams * vocab_size candidate sequences.
|
863 |
+
# For each item, get the top 2*k candidates with the highest log-
|
864 |
+
# probabilities. We gather the top 2*K beams here so that even if the best
|
865 |
+
# K sequences reach EOS simultaneously, we have another K sequences
|
866 |
+
# remaining to continue the live beam search.
|
867 |
+
# Gather the top 2*K scores from _all_ beams.
|
868 |
+
# Gather 2*k top beams.
|
869 |
+
# Recover the beam index by floor division.
|
870 |
+
# Recover token id by modulo division and expand Id array for broadcasting.
|
871 |
+
# Update sequences for the 2*K top-k new sequences.
|
872 |
+
beams_to_keep = 2 * num_beams
|
873 |
+
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep)
|
874 |
+
topk_beam_indices = topk_indices // vocab_size
|
875 |
+
topk_running_sequences = gather_beams(
|
876 |
+
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep
|
877 |
+
)
|
878 |
+
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
|
879 |
+
topk_sequences = lax.dynamic_update_slice(
|
880 |
+
topk_running_sequences, topk_ids, (0, 0, state.cur_len)
|
881 |
+
)
|
882 |
+
|
883 |
+
# 4. Check which sequences have ended
|
884 |
+
# Update current sequences:
|
885 |
+
# Did any of these sequences reach an end marker?
|
886 |
+
# To prevent these just finished sequences from being added to the current sequences
|
887 |
+
# set of active beam search sequences, set their log probs to a very large
|
888 |
+
# negative value.
|
889 |
+
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id
|
890 |
+
topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7)
|
891 |
+
|
892 |
+
# 5. Get running sequences scores for next
|
893 |
+
# Determine the top k beam indices (from top 2*k beams) from log probs
|
894 |
+
# and gather top k beams (from top 2*k beams).
|
895 |
+
next_topk_indices = jnp.flip(
|
896 |
+
lax.top_k(topk_log_probs, k=num_beams)[1], axis=1
|
897 |
+
)
|
898 |
+
next_running_sequences, next_running_scores = gather_beams(
|
899 |
+
[topk_sequences, topk_log_probs],
|
900 |
+
next_topk_indices,
|
901 |
+
batch_size,
|
902 |
+
num_beams,
|
903 |
+
)
|
904 |
+
|
905 |
+
# 6. Process topk logits
|
906 |
+
# Further process log probs:
|
907 |
+
# - add length penalty
|
908 |
+
# - make sure no scores can be added anymore if beam is full
|
909 |
+
# - make sure still running sequences cannot be chosen as finalized beam
|
910 |
+
topk_log_probs = topk_log_probs / (state.cur_len ** length_penalty)
|
911 |
+
beams_in_batch_are_full = (
|
912 |
+
jnp.broadcast_to(
|
913 |
+
state.is_sent_finished.all(axis=-1, keepdims=True),
|
914 |
+
did_topk_just_finished.shape,
|
915 |
+
)
|
916 |
+
& early_stopping
|
917 |
+
)
|
918 |
+
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
|
919 |
+
topk_log_probs += add_penalty * np.array(-1.0e7)
|
920 |
+
|
921 |
+
# 7. Get scores, sequences, is sentence finished for next.
|
922 |
+
# Combine sequences, scores, and flags along the beam dimension and compare
|
923 |
+
# new finished sequence scores to existing finished scores and select the
|
924 |
+
# best from the new set of beams
|
925 |
+
merged_sequences = jnp.concatenate(
|
926 |
+
[state.sequences, topk_sequences], axis=1
|
927 |
+
)
|
928 |
+
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1)
|
929 |
+
merged_is_sent_finished = jnp.concatenate(
|
930 |
+
[state.is_sent_finished, did_topk_just_finished], axis=1
|
931 |
+
)
|
932 |
+
topk_merged_indices = jnp.flip(
|
933 |
+
lax.top_k(merged_scores, k=num_beams)[1], axis=1
|
934 |
+
)
|
935 |
+
next_sequences, next_scores, next_is_sent_finished = gather_beams(
|
936 |
+
[merged_sequences, merged_scores, merged_is_sent_finished],
|
937 |
+
topk_merged_indices,
|
938 |
+
batch_size,
|
939 |
+
num_beams,
|
940 |
+
)
|
941 |
+
|
942 |
+
# 8. Update model kwargs.
|
943 |
+
# Determine the top k beam indices from the original set of all beams.
|
944 |
+
# With these, gather the top k beam-associated caches.
|
945 |
+
next_running_indices = gather_beams(
|
946 |
+
topk_beam_indices, next_topk_indices, batch_size, num_beams
|
947 |
+
)
|
948 |
+
next_cache = gather_beams(
|
949 |
+
cache, next_running_indices, batch_size, num_beams
|
950 |
+
)
|
951 |
+
model_outputs["past_key_values"] = jax.tree_map(
|
952 |
+
lambda x: flatten_beam_dim(x), next_cache
|
953 |
+
)
|
954 |
+
next_model_kwargs = self.update_inputs_for_generation(
|
955 |
+
model_outputs, state.model_kwargs
|
956 |
+
)
|
957 |
+
|
958 |
+
return BeamSearchState(
|
959 |
+
cur_len=state.cur_len + 1,
|
960 |
+
running_scores=next_running_scores,
|
961 |
+
running_sequences=next_running_sequences,
|
962 |
+
scores=next_scores,
|
963 |
+
sequences=next_sequences,
|
964 |
+
is_sent_finished=next_is_sent_finished,
|
965 |
+
model_kwargs=next_model_kwargs,
|
966 |
+
)
|
967 |
+
|
968 |
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
969 |
+
state = beam_search_body_fn(state)
|
970 |
+
|
971 |
+
if not trace:
|
972 |
+
state = self._run_loop_in_debug(
|
973 |
+
beam_search_cond_fn, beam_search_body_fn, state
|
974 |
+
)
|
975 |
+
else:
|
976 |
+
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state)
|
977 |
+
|
978 |
+
# Account for the edge-case where there are no finished sequences for a
|
979 |
+
# particular batch item. If so, return running sequences for that batch item.
|
980 |
+
none_finished = jnp.any(state.is_sent_finished, axis=1)
|
981 |
+
sequences = jnp.where(
|
982 |
+
none_finished[:, None, None], state.sequences, state.running_sequences
|
983 |
+
)
|
984 |
+
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores)
|
985 |
+
|
986 |
+
# take best beam for each batch
|
987 |
+
sequences = sequences[:, -1]
|
988 |
+
scores = scores[:, -1]
|
989 |
+
|
990 |
+
return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
|
flax_clip_vision_marian/modeling_clip_vision_marian.py
ADDED
@@ -0,0 +1,776 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional, Tuple
|
2 |
+
|
3 |
+
import flax.linen as nn
|
4 |
+
import jax
|
5 |
+
import jax.numpy as jnp
|
6 |
+
from flax.core.frozen_dict import FrozenDict, unfreeze
|
7 |
+
from jax import lax
|
8 |
+
from jax.random import PRNGKey
|
9 |
+
from transformers import (
|
10 |
+
CLIPVisionConfig,
|
11 |
+
FlaxCLIPVisionModel,
|
12 |
+
FlaxMarianModel,
|
13 |
+
MarianConfig
|
14 |
+
)
|
15 |
+
from transformers.modeling_flax_outputs import (
|
16 |
+
FlaxBaseModelOutputWithPooling,
|
17 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
18 |
+
FlaxSeq2SeqLMOutput,
|
19 |
+
FlaxSeq2SeqModelOutput,
|
20 |
+
)
|
21 |
+
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
|
22 |
+
from transformers.models.marian.modeling_flax_marian import (
|
23 |
+
FlaxMarianDecoder,
|
24 |
+
FlaxPreTrainedModel,
|
25 |
+
shift_tokens_right
|
26 |
+
)
|
27 |
+
|
28 |
+
from .modeling_clip_vision_utils import FlaxCLIPVisionMarianPreTrainedModel
|
29 |
+
from .configuration_clip_vision_marian import CLIPVisionMarianConfig
|
30 |
+
|
31 |
+
|
32 |
+
class FlaxCLIPVisionMarianModule(nn.Module):
|
33 |
+
config: CLIPVisionMarianConfig
|
34 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
35 |
+
|
36 |
+
def setup(self):
|
37 |
+
self.shared = nn.Embed(
|
38 |
+
self.config.marian_config.vocab_size,
|
39 |
+
self.config.marian_config.d_model,
|
40 |
+
embedding_init=jax.nn.initializers.normal(
|
41 |
+
self.config.marian_config.init_std, self.dtype
|
42 |
+
),
|
43 |
+
dtype=self.dtype,
|
44 |
+
)
|
45 |
+
|
46 |
+
self.encoder = FlaxCLIPVisionModule(
|
47 |
+
self.config.clip_vision_config, dtype=self.dtype
|
48 |
+
)
|
49 |
+
self.decoder = FlaxMarianDecoder(
|
50 |
+
self.config.marian_config, dtype=self.dtype, embed_tokens=self.shared
|
51 |
+
)
|
52 |
+
|
53 |
+
self.visual_projection = nn.Dense(
|
54 |
+
self.config.marian_config.hidden_size,
|
55 |
+
dtype=self.dtype,
|
56 |
+
kernel_init=jax.nn.initializers.normal(
|
57 |
+
self.config.marian_config.init_std, self.dtype
|
58 |
+
),
|
59 |
+
)
|
60 |
+
|
61 |
+
def _get_encoder_module(self):
|
62 |
+
return self.encoder
|
63 |
+
|
64 |
+
def _get_decoder_module(self):
|
65 |
+
return self.decoder
|
66 |
+
|
67 |
+
def __call__(
|
68 |
+
self,
|
69 |
+
pixel_values,
|
70 |
+
decoder_input_ids,
|
71 |
+
decoder_attention_mask,
|
72 |
+
decoder_position_ids,
|
73 |
+
output_attentions: bool = False,
|
74 |
+
output_hidden_states: bool = False,
|
75 |
+
return_dict: bool = True,
|
76 |
+
deterministic: bool = True,
|
77 |
+
):
|
78 |
+
|
79 |
+
encoder_outputs = self.encoder(
|
80 |
+
pixel_values=pixel_values,
|
81 |
+
output_attentions=output_attentions,
|
82 |
+
output_hidden_states=output_hidden_states,
|
83 |
+
return_dict=return_dict,
|
84 |
+
deterministic=deterministic,
|
85 |
+
)
|
86 |
+
|
87 |
+
batch_size, sequence_length = encoder_outputs[0].shape[:2]
|
88 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
89 |
+
|
90 |
+
encoder_hidden_states = self.visual_projection(encoder_outputs[0])
|
91 |
+
|
92 |
+
decoder_outputs = self.decoder(
|
93 |
+
input_ids=decoder_input_ids,
|
94 |
+
attention_mask=decoder_attention_mask,
|
95 |
+
position_ids=decoder_position_ids,
|
96 |
+
encoder_hidden_states=encoder_hidden_states,
|
97 |
+
encoder_attention_mask=encoder_attention_mask,
|
98 |
+
output_attentions=output_attentions,
|
99 |
+
output_hidden_states=output_hidden_states,
|
100 |
+
return_dict=return_dict,
|
101 |
+
deterministic=deterministic,
|
102 |
+
)
|
103 |
+
|
104 |
+
if not return_dict:
|
105 |
+
return decoder_outputs + encoder_outputs
|
106 |
+
|
107 |
+
return FlaxSeq2SeqModelOutput(
|
108 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
109 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
110 |
+
decoder_attentions=decoder_outputs.attentions,
|
111 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
112 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
113 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
114 |
+
encoder_attentions=encoder_outputs.attentions,
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
class FlaxCLIPVisionMarianForConditionalGenerationModule(nn.Module):
|
119 |
+
config: CLIPVisionMarianConfig
|
120 |
+
dtype: jnp.dtype = jnp.float32
|
121 |
+
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
122 |
+
|
123 |
+
def setup(self):
|
124 |
+
self.model = FlaxCLIPVisionMarianModule(config=self.config, dtype=self.dtype)
|
125 |
+
self.lm_head = nn.Dense(
|
126 |
+
self.model.shared.num_embeddings,
|
127 |
+
use_bias=False,
|
128 |
+
dtype=self.dtype,
|
129 |
+
kernel_init=jax.nn.initializers.normal(
|
130 |
+
self.config.marian_config.init_std, self.dtype
|
131 |
+
),
|
132 |
+
)
|
133 |
+
self.final_logits_bias = self.param(
|
134 |
+
"final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)
|
135 |
+
)
|
136 |
+
|
137 |
+
def _get_encoder_module(self):
|
138 |
+
return self.model.encoder
|
139 |
+
|
140 |
+
def _get_decoder_module(self):
|
141 |
+
return self.model.decoder
|
142 |
+
|
143 |
+
def _get_visual_projection_module(self):
|
144 |
+
return self.model.visual_projection
|
145 |
+
|
146 |
+
def __call__(
|
147 |
+
self,
|
148 |
+
pixel_values,
|
149 |
+
decoder_input_ids,
|
150 |
+
decoder_attention_mask,
|
151 |
+
decoder_position_ids,
|
152 |
+
output_attentions: bool = False,
|
153 |
+
output_hidden_states: bool = False,
|
154 |
+
return_dict: bool = True,
|
155 |
+
deterministic: bool = True,
|
156 |
+
):
|
157 |
+
outputs = self.model(
|
158 |
+
pixel_values=pixel_values,
|
159 |
+
decoder_input_ids=decoder_input_ids,
|
160 |
+
decoder_attention_mask=decoder_attention_mask,
|
161 |
+
decoder_position_ids=decoder_position_ids,
|
162 |
+
output_attentions=output_attentions,
|
163 |
+
output_hidden_states=output_hidden_states,
|
164 |
+
return_dict=return_dict,
|
165 |
+
deterministic=deterministic,
|
166 |
+
)
|
167 |
+
|
168 |
+
hidden_states = outputs[0]
|
169 |
+
|
170 |
+
if self.config.tie_word_embeddings:
|
171 |
+
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
172 |
+
lm_logits = self.lm_head.apply(
|
173 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
174 |
+
)
|
175 |
+
else:
|
176 |
+
lm_logits = self.lm_head(hidden_states)
|
177 |
+
|
178 |
+
lm_logits += self.final_logits_bias
|
179 |
+
|
180 |
+
if not return_dict:
|
181 |
+
output = (lm_logits,) + outputs[1:]
|
182 |
+
return output
|
183 |
+
|
184 |
+
return FlaxSeq2SeqLMOutput(
|
185 |
+
logits=lm_logits,
|
186 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
187 |
+
decoder_attentions=outputs.decoder_attentions,
|
188 |
+
cross_attentions=outputs.cross_attentions,
|
189 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
190 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
191 |
+
encoder_attentions=outputs.encoder_attentions,
|
192 |
+
)
|
193 |
+
|
194 |
+
|
195 |
+
class FlaxCLIPVisionMarianOuterPreTrainedModel(FlaxCLIPVisionMarianPreTrainedModel):
|
196 |
+
config_class = CLIPVisionMarianConfig
|
197 |
+
base_model_prefix: str = "model"
|
198 |
+
module_class: nn.Module = None
|
199 |
+
|
200 |
+
def __init__(
|
201 |
+
self,
|
202 |
+
config: CLIPVisionMarianConfig,
|
203 |
+
input_shape: Tuple = None,
|
204 |
+
seed: int = 0,
|
205 |
+
dtype: jnp.dtype = jnp.float32,
|
206 |
+
**kwargs,
|
207 |
+
):
|
208 |
+
if input_shape is None:
|
209 |
+
input_shape = (
|
210 |
+
(
|
211 |
+
1,
|
212 |
+
config.clip_vision_config.image_size,
|
213 |
+
config.clip_vision_config.image_size,
|
214 |
+
3,
|
215 |
+
),
|
216 |
+
(1, 1),
|
217 |
+
)
|
218 |
+
|
219 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
220 |
+
super().__init__(
|
221 |
+
config, module, input_shape=input_shape, seed=seed, dtype=dtype
|
222 |
+
)
|
223 |
+
|
224 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
225 |
+
# init input tensors
|
226 |
+
pixel_values = jax.random.normal(rng, input_shape[0])
|
227 |
+
# # make sure initialization pass will work for FlaxMarianForSequenceClassificationModule
|
228 |
+
# input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)
|
229 |
+
|
230 |
+
decoder_input_ids = jnp.zeros(input_shape[1], dtype="i4")
|
231 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
232 |
+
|
233 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
234 |
+
decoder_position_ids = jnp.broadcast_to(
|
235 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
236 |
+
)
|
237 |
+
|
238 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
239 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
240 |
+
|
241 |
+
return self.module.init(
|
242 |
+
rngs,
|
243 |
+
pixel_values,
|
244 |
+
decoder_input_ids,
|
245 |
+
decoder_attention_mask,
|
246 |
+
decoder_position_ids,
|
247 |
+
)["params"]
|
248 |
+
|
249 |
+
def init_cache(self, batch_size, max_length, encoder_outputs):
|
250 |
+
|
251 |
+
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
252 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
253 |
+
decoder_position_ids = jnp.broadcast_to(
|
254 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
|
255 |
+
decoder_input_ids.shape,
|
256 |
+
)
|
257 |
+
|
258 |
+
def _decoder_forward(
|
259 |
+
module,
|
260 |
+
decoder_input_ids,
|
261 |
+
decoder_attention_mask,
|
262 |
+
decoder_position_ids,
|
263 |
+
**kwargs,
|
264 |
+
):
|
265 |
+
decoder_module = module._get_decoder_module()
|
266 |
+
return decoder_module(
|
267 |
+
decoder_input_ids,
|
268 |
+
decoder_attention_mask,
|
269 |
+
decoder_position_ids,
|
270 |
+
**kwargs,
|
271 |
+
)
|
272 |
+
|
273 |
+
init_variables = self.module.init(
|
274 |
+
jax.random.PRNGKey(0),
|
275 |
+
decoder_input_ids=decoder_input_ids,
|
276 |
+
decoder_attention_mask=decoder_attention_mask,
|
277 |
+
decoder_position_ids=decoder_position_ids,
|
278 |
+
encoder_hidden_states=encoder_outputs[0],
|
279 |
+
init_cache=True,
|
280 |
+
method=_decoder_forward, # we only need to call the decoder to init the cache
|
281 |
+
)
|
282 |
+
return unfreeze(init_variables["cache"])
|
283 |
+
|
284 |
+
def encode(
|
285 |
+
self,
|
286 |
+
pixel_values: jnp.ndarray,
|
287 |
+
output_attentions: Optional[bool] = None,
|
288 |
+
output_hidden_states: Optional[bool] = None,
|
289 |
+
return_dict: Optional[bool] = None,
|
290 |
+
train: bool = False,
|
291 |
+
params: dict = None,
|
292 |
+
dropout_rng: PRNGKey = None,
|
293 |
+
):
|
294 |
+
output_attentions = (
|
295 |
+
output_attentions
|
296 |
+
if output_attentions is not None
|
297 |
+
else self.config.output_attentions
|
298 |
+
)
|
299 |
+
output_hidden_states = (
|
300 |
+
output_hidden_states
|
301 |
+
if output_hidden_states is not None
|
302 |
+
else self.config.output_hidden_states
|
303 |
+
)
|
304 |
+
return_dict = (
|
305 |
+
return_dict if return_dict is not None else self.config.return_dict
|
306 |
+
)
|
307 |
+
|
308 |
+
#pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
|
309 |
+
|
310 |
+
# Handle any PRNG if needed
|
311 |
+
rngs = {}
|
312 |
+
if dropout_rng is not None:
|
313 |
+
rngs["dropout"] = dropout_rng
|
314 |
+
|
315 |
+
def _encoder_forward(module, pixel_values, **kwargs):
|
316 |
+
encode_module = module._get_encoder_module()
|
317 |
+
visual_projection = module._get_visual_projection_module()
|
318 |
+
|
319 |
+
outputs = encode_module(pixel_values, **kwargs)
|
320 |
+
|
321 |
+
return FlaxBaseModelOutputWithPooling(
|
322 |
+
last_hidden_state=visual_projection(outputs.last_hidden_state),
|
323 |
+
pooler_output=outputs.pooler_output,
|
324 |
+
hidden_states=outputs.hidden_states,
|
325 |
+
attentions=outputs.attentions,
|
326 |
+
)
|
327 |
+
|
328 |
+
return self.module.apply(
|
329 |
+
{"params": params or self.params},
|
330 |
+
pixel_values=jnp.array(pixel_values, dtype="i4"),
|
331 |
+
output_attentions=output_attentions,
|
332 |
+
output_hidden_states=output_hidden_states,
|
333 |
+
return_dict=return_dict,
|
334 |
+
deterministic=not train,
|
335 |
+
rngs=rngs,
|
336 |
+
method=_encoder_forward,
|
337 |
+
)
|
338 |
+
|
339 |
+
def decode(
|
340 |
+
self,
|
341 |
+
decoder_input_ids,
|
342 |
+
encoder_outputs,
|
343 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
344 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
345 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
346 |
+
past_key_values: dict = None,
|
347 |
+
output_attentions: Optional[bool] = None,
|
348 |
+
output_hidden_states: Optional[bool] = None,
|
349 |
+
return_dict: Optional[bool] = None,
|
350 |
+
train: bool = False,
|
351 |
+
params: dict = None,
|
352 |
+
dropout_rng: PRNGKey = None,
|
353 |
+
):
|
354 |
+
|
355 |
+
output_attentions = (
|
356 |
+
output_attentions
|
357 |
+
if output_attentions is not None
|
358 |
+
else self.config.output_attentions
|
359 |
+
)
|
360 |
+
output_hidden_states = (
|
361 |
+
output_hidden_states
|
362 |
+
if output_hidden_states is not None
|
363 |
+
else self.config.output_hidden_states
|
364 |
+
)
|
365 |
+
return_dict = (
|
366 |
+
return_dict if return_dict is not None else self.config.return_dict
|
367 |
+
)
|
368 |
+
|
369 |
+
encoder_hidden_states = encoder_outputs[0]
|
370 |
+
|
371 |
+
if encoder_attention_mask is None:
|
372 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
373 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
374 |
+
|
375 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
376 |
+
if decoder_attention_mask is None:
|
377 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
378 |
+
|
379 |
+
if decoder_position_ids is None:
|
380 |
+
if past_key_values is not None:
|
381 |
+
raise ValueError(
|
382 |
+
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
|
383 |
+
)
|
384 |
+
|
385 |
+
decoder_position_ids = jnp.broadcast_to(
|
386 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
387 |
+
)
|
388 |
+
|
389 |
+
# Handle any PRNG if needed
|
390 |
+
rngs = {}
|
391 |
+
if dropout_rng is not None:
|
392 |
+
rngs["dropout"] = dropout_rng
|
393 |
+
|
394 |
+
inputs = {"params": params or self.params}
|
395 |
+
|
396 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
397 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
398 |
+
# it can be changed by FlaxMarianAttention module
|
399 |
+
if past_key_values:
|
400 |
+
inputs["cache"] = past_key_values
|
401 |
+
mutable = ["cache"]
|
402 |
+
else:
|
403 |
+
mutable = False
|
404 |
+
|
405 |
+
def _decoder_forward(
|
406 |
+
module,
|
407 |
+
decoder_input_ids,
|
408 |
+
decoder_attention_mask,
|
409 |
+
decoder_position_ids,
|
410 |
+
**kwargs,
|
411 |
+
):
|
412 |
+
decoder_module = module._get_decoder_module()
|
413 |
+
return decoder_module(
|
414 |
+
decoder_input_ids,
|
415 |
+
decoder_attention_mask,
|
416 |
+
decoder_position_ids,
|
417 |
+
**kwargs,
|
418 |
+
)
|
419 |
+
|
420 |
+
outputs = self.module.apply(
|
421 |
+
inputs,
|
422 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
423 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
424 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
425 |
+
encoder_hidden_states=encoder_hidden_states,
|
426 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
427 |
+
output_attentions=output_attentions,
|
428 |
+
output_hidden_states=output_hidden_states,
|
429 |
+
return_dict=return_dict,
|
430 |
+
deterministic=not train,
|
431 |
+
rngs=rngs,
|
432 |
+
mutable=mutable,
|
433 |
+
method=_decoder_forward,
|
434 |
+
)
|
435 |
+
|
436 |
+
# add updated cache to model output
|
437 |
+
if past_key_values is not None and return_dict:
|
438 |
+
outputs, past = outputs
|
439 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
440 |
+
return outputs
|
441 |
+
elif past_key_values is not None and not return_dict:
|
442 |
+
outputs, past = outputs
|
443 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
444 |
+
|
445 |
+
return outputs
|
446 |
+
|
447 |
+
def __call__(
|
448 |
+
self,
|
449 |
+
pixel_values: jnp.ndarray,
|
450 |
+
decoder_input_ids: Optional[jnp.ndarray] = None,
|
451 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
452 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
453 |
+
output_attentions: Optional[bool] = None,
|
454 |
+
output_hidden_states: Optional[bool] = None,
|
455 |
+
return_dict: Optional[bool] = None,
|
456 |
+
train: bool = False,
|
457 |
+
params: dict = None,
|
458 |
+
dropout_rng: PRNGKey = None,
|
459 |
+
):
|
460 |
+
output_attentions = (
|
461 |
+
output_attentions
|
462 |
+
if output_attentions is not None
|
463 |
+
else self.config.output_attentions
|
464 |
+
)
|
465 |
+
output_hidden_states = (
|
466 |
+
output_hidden_states
|
467 |
+
if output_hidden_states is not None
|
468 |
+
else self.config.output_hidden_states
|
469 |
+
)
|
470 |
+
return_dict = (
|
471 |
+
return_dict if return_dict is not None else self.config.return_dict
|
472 |
+
)
|
473 |
+
|
474 |
+
#pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
|
475 |
+
|
476 |
+
# # prepare encoder inputs
|
477 |
+
# if attention_mask is None:
|
478 |
+
# attention_mask = jnp.ones_like(input_ids)
|
479 |
+
# if position_ids is None:
|
480 |
+
# batch_size, sequence_length = input_ids.shape
|
481 |
+
# position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
482 |
+
|
483 |
+
# prepare decoder inputs
|
484 |
+
# if decoder_input_ids is None:
|
485 |
+
# decoder_input_ids = shift_tokens_right(
|
486 |
+
# input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
|
487 |
+
# ) # TODO: Check how to use this
|
488 |
+
if decoder_attention_mask is None:
|
489 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
490 |
+
if decoder_position_ids is None:
|
491 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
492 |
+
decoder_position_ids = jnp.broadcast_to(
|
493 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
494 |
+
)
|
495 |
+
|
496 |
+
# Handle any PRNG if needed
|
497 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
498 |
+
|
499 |
+
return self.module.apply(
|
500 |
+
{"params": params or self.params},
|
501 |
+
pixel_values=jnp.array(pixel_values, dtype=jnp.float32),
|
502 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
503 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
504 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
505 |
+
output_attentions=output_attentions,
|
506 |
+
output_hidden_states=output_hidden_states,
|
507 |
+
return_dict=return_dict,
|
508 |
+
deterministic=not train,
|
509 |
+
rngs=rngs,
|
510 |
+
)
|
511 |
+
|
512 |
+
|
513 |
+
class FlaxCLIPVisionMarianForConditionalGeneration(
|
514 |
+
FlaxCLIPVisionMarianOuterPreTrainedModel
|
515 |
+
):
|
516 |
+
module_class = FlaxCLIPVisionMarianForConditionalGenerationModule
|
517 |
+
dtype: jnp.dtype = jnp.float32
|
518 |
+
|
519 |
+
def decode(
|
520 |
+
self,
|
521 |
+
decoder_input_ids,
|
522 |
+
encoder_outputs,
|
523 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
524 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
525 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
526 |
+
past_key_values: dict = None,
|
527 |
+
output_attentions: Optional[bool] = None,
|
528 |
+
output_hidden_states: Optional[bool] = None,
|
529 |
+
return_dict: Optional[bool] = None,
|
530 |
+
deterministic: bool = True,
|
531 |
+
params: dict = None,
|
532 |
+
dropout_rng: PRNGKey = None,
|
533 |
+
):
|
534 |
+
output_attentions = (
|
535 |
+
output_attentions
|
536 |
+
if output_attentions is not None
|
537 |
+
else self.config.output_attentions
|
538 |
+
)
|
539 |
+
output_hidden_states = (
|
540 |
+
output_hidden_states
|
541 |
+
if output_hidden_states is not None
|
542 |
+
else self.config.output_hidden_states
|
543 |
+
)
|
544 |
+
return_dict = (
|
545 |
+
return_dict if return_dict is not None else self.config.return_dict
|
546 |
+
)
|
547 |
+
|
548 |
+
encoder_hidden_states = encoder_outputs[0]
|
549 |
+
|
550 |
+
if encoder_attention_mask is None:
|
551 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
552 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
553 |
+
|
554 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
555 |
+
if decoder_attention_mask is None:
|
556 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
557 |
+
|
558 |
+
if decoder_position_ids is None:
|
559 |
+
if past_key_values is not None:
|
560 |
+
raise ValueError(
|
561 |
+
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
|
562 |
+
)
|
563 |
+
|
564 |
+
decoder_position_ids = jnp.broadcast_to(
|
565 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
566 |
+
)
|
567 |
+
|
568 |
+
# Handle any PRNG if needed
|
569 |
+
rngs = {}
|
570 |
+
if dropout_rng is not None:
|
571 |
+
rngs["dropout"] = dropout_rng
|
572 |
+
|
573 |
+
inputs = {"params": params or self.params}
|
574 |
+
|
575 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
576 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
577 |
+
# it can be changed by FlaxMarianAttention module
|
578 |
+
if past_key_values:
|
579 |
+
inputs["cache"] = past_key_values
|
580 |
+
mutable = ["cache"]
|
581 |
+
else:
|
582 |
+
mutable = False
|
583 |
+
|
584 |
+
def _decoder_forward(
|
585 |
+
module,
|
586 |
+
decoder_input_ids,
|
587 |
+
decoder_attention_mask,
|
588 |
+
decoder_position_ids,
|
589 |
+
**kwargs,
|
590 |
+
):
|
591 |
+
decoder_module = module._get_decoder_module()
|
592 |
+
outputs = decoder_module(
|
593 |
+
decoder_input_ids,
|
594 |
+
decoder_attention_mask,
|
595 |
+
decoder_position_ids,
|
596 |
+
**kwargs,
|
597 |
+
)
|
598 |
+
hidden_states = outputs[0]
|
599 |
+
|
600 |
+
if self.config.tie_word_embeddings:
|
601 |
+
shared_embedding = module.model.variables["params"]["shared"][
|
602 |
+
"embedding"
|
603 |
+
]
|
604 |
+
lm_logits = module.lm_head.apply(
|
605 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
606 |
+
)
|
607 |
+
else:
|
608 |
+
lm_logits = module.lm_head(hidden_states)
|
609 |
+
|
610 |
+
lm_logits += module.final_logits_bias
|
611 |
+
return lm_logits, outputs
|
612 |
+
|
613 |
+
outputs = self.module.apply(
|
614 |
+
inputs,
|
615 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
616 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
617 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
618 |
+
encoder_hidden_states=encoder_hidden_states,
|
619 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
620 |
+
output_attentions=output_attentions,
|
621 |
+
output_hidden_states=output_hidden_states,
|
622 |
+
return_dict=return_dict,
|
623 |
+
deterministic=deterministic,
|
624 |
+
rngs=rngs,
|
625 |
+
mutable=mutable,
|
626 |
+
method=_decoder_forward,
|
627 |
+
)
|
628 |
+
|
629 |
+
if past_key_values is None:
|
630 |
+
lm_logits, decoder_outputs = outputs
|
631 |
+
else:
|
632 |
+
(lm_logits, decoder_outputs), past = outputs
|
633 |
+
|
634 |
+
if return_dict:
|
635 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
636 |
+
logits=lm_logits,
|
637 |
+
hidden_states=decoder_outputs.hidden_states,
|
638 |
+
attentions=decoder_outputs.attentions,
|
639 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
640 |
+
)
|
641 |
+
else:
|
642 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
643 |
+
|
644 |
+
# add updated cache to model output
|
645 |
+
if past_key_values is not None and return_dict:
|
646 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
647 |
+
return outputs
|
648 |
+
elif past_key_values is not None and not return_dict:
|
649 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
650 |
+
|
651 |
+
return outputs
|
652 |
+
|
653 |
+
def prepare_inputs_for_generation(
|
654 |
+
self,
|
655 |
+
decoder_input_ids,
|
656 |
+
max_length,
|
657 |
+
attention_mask: Optional[jnp.DeviceArray] = None,
|
658 |
+
decoder_attention_mask: Optional[jnp.DeviceArray] = None,
|
659 |
+
encoder_outputs=None,
|
660 |
+
**kwargs,
|
661 |
+
):
|
662 |
+
# initializing the cache
|
663 |
+
batch_size, seq_length = decoder_input_ids.shape
|
664 |
+
|
665 |
+
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
666 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
667 |
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
668 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
669 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
670 |
+
if decoder_attention_mask is not None:
|
671 |
+
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
672 |
+
extended_attention_mask = lax.dynamic_update_slice(
|
673 |
+
extended_attention_mask, decoder_attention_mask, (0, 0)
|
674 |
+
)
|
675 |
+
else:
|
676 |
+
position_ids = jnp.broadcast_to(
|
677 |
+
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
|
678 |
+
)
|
679 |
+
|
680 |
+
return {
|
681 |
+
"past_key_values": past_key_values,
|
682 |
+
"encoder_outputs": encoder_outputs,
|
683 |
+
"encoder_attention_mask": attention_mask,
|
684 |
+
"decoder_attention_mask": extended_attention_mask,
|
685 |
+
"decoder_position_ids": position_ids,
|
686 |
+
}
|
687 |
+
|
688 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
689 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
690 |
+
model_kwargs["decoder_position_ids"] = (
|
691 |
+
model_kwargs["decoder_position_ids"][:, -1:] + 1
|
692 |
+
)
|
693 |
+
return model_kwargs
|
694 |
+
|
695 |
+
@classmethod
|
696 |
+
def from_pretrained(cls, *args, **kwargs):
|
697 |
+
# At the moment fast initialization is not supported
|
698 |
+
# for composite models
|
699 |
+
# kwargs["_fast_init"] = False
|
700 |
+
return super().from_pretrained(*args, **kwargs)
|
701 |
+
|
702 |
+
@classmethod
|
703 |
+
def from_clip_vision_marian_pretrained(
|
704 |
+
cls,
|
705 |
+
clip_vision_model_name_or_path: str = None,
|
706 |
+
marian_model_name_or_path: str = None,
|
707 |
+
*model_args,
|
708 |
+
**kwargs,
|
709 |
+
) -> FlaxCLIPVisionMarianPreTrainedModel:
|
710 |
+
|
711 |
+
kwargs_marian = {
|
712 |
+
argument[len("marian_") :]: value
|
713 |
+
for argument, value in kwargs.items()
|
714 |
+
if argument.startswith("marian_")
|
715 |
+
}
|
716 |
+
kwargs_clip_vision = {
|
717 |
+
argument[len("clip_vision_") :]: value
|
718 |
+
for argument, value in kwargs.items()
|
719 |
+
if argument.startswith("clip_vision_")
|
720 |
+
}
|
721 |
+
# remove marian, clip_vision kwargs from kwargs
|
722 |
+
for key in kwargs_marian.keys():
|
723 |
+
del kwargs["marian_" + key]
|
724 |
+
for key in kwargs_clip_vision.keys():
|
725 |
+
del kwargs["clip_vision_" + key]
|
726 |
+
|
727 |
+
# Load and initialize the marian and clip_vision model
|
728 |
+
marian_model = kwargs_marian.pop("model", None)
|
729 |
+
if marian_model is None:
|
730 |
+
assert (
|
731 |
+
marian_model_name_or_path is not None
|
732 |
+
), "If `model` is not defined as an argument, a `marian_model_name_or_path` has to be defined"
|
733 |
+
|
734 |
+
if "config" not in kwargs_marian:
|
735 |
+
marian_config = MarianConfig.from_pretrained(marian_model_name_or_path)
|
736 |
+
kwargs_marian["config"] = marian_config
|
737 |
+
|
738 |
+
marian_model = FlaxMarianModel.from_pretrained(
|
739 |
+
marian_model_name_or_path, *model_args, **kwargs_marian,from_pt=True
|
740 |
+
)
|
741 |
+
clip_vision_model = kwargs_clip_vision.pop("model", None)
|
742 |
+
if clip_vision_model is None:
|
743 |
+
assert (
|
744 |
+
clip_vision_model_name_or_path is not None
|
745 |
+
), "If `model` is not defined as an argument, a `clip_vision_model_name_or_path` has to be defined"
|
746 |
+
|
747 |
+
if "config" not in kwargs_clip_vision:
|
748 |
+
clip_vision_config = CLIPVisionConfig.from_pretrained(
|
749 |
+
clip_vision_model_name_or_path
|
750 |
+
)
|
751 |
+
kwargs_clip_vision["config"] = clip_vision_config
|
752 |
+
|
753 |
+
clip_vision_model = FlaxCLIPVisionModel.from_pretrained(
|
754 |
+
clip_vision_model_name_or_path, *model_args, **kwargs_clip_vision
|
755 |
+
)
|
756 |
+
|
757 |
+
# instantiate config with corresponding kwargs
|
758 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
759 |
+
config = CLIPVisionMarianConfig.from_clip_vision_marian_configs(
|
760 |
+
clip_vision_model.config, marian_model.config, **kwargs
|
761 |
+
)
|
762 |
+
|
763 |
+
# init model
|
764 |
+
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
765 |
+
model.params["model"]["encoder"] = clip_vision_model.params
|
766 |
+
model.params["model"]["decoder"] = marian_model.params["decoder"]
|
767 |
+
model.params["model"]["shared"] = marian_model.params["shared"]
|
768 |
+
# model.params["marian_model"] = marian_model.params
|
769 |
+
|
770 |
+
return model
|
771 |
+
|
772 |
+
|
773 |
+
# flax_clip_vision_marian_cg = FlaxCLIPVisionmarianForConditionalGeneration.from_clip_vision_marian_pretrained('openai/clip-vit-base-patch32', 'facebook/marian-large')
|
774 |
+
# outputs = flax_clip_vision_marian_cg(pixel_values, input_ids, attention_mask, position_ids, output_hidden_states=True)
|
775 |
+
# flax_vit_bart_cg.generate(input_ids=pixel_values, decoder_start_token_id=tokenizer.lang_code_to_id['en_XX'])s
|
776 |
+
#flax_clip_vision_marian_cg = FlaxCLIPVisionMarianForConditionalGeneration.from_clip_vision_marian_pretrained('openai/clip-vit-base-patch32','Helsinki-NLP/opus-mt-en-id')
|
flax_clip_vision_marian/modeling_clip_vision_utils.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NEW
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
# from functools import partial
|
6 |
+
from pickle import UnpicklingError
|
7 |
+
from typing import Dict, Set, Tuple, Union
|
8 |
+
|
9 |
+
import flax.linen as nn
|
10 |
+
import jax
|
11 |
+
import jax.numpy as jnp
|
12 |
+
from flax.core.frozen_dict import FrozenDict, unfreeze
|
13 |
+
from flax.serialization import from_bytes, to_bytes
|
14 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
15 |
+
from jax.random import PRNGKey
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.file_utils import (
|
18 |
+
FLAX_WEIGHTS_NAME,
|
19 |
+
WEIGHTS_NAME,
|
20 |
+
PushToHubMixin,
|
21 |
+
cached_path,
|
22 |
+
hf_bucket_url,
|
23 |
+
is_offline_mode,
|
24 |
+
is_remote_url,
|
25 |
+
)
|
26 |
+
from transformers.modeling_flax_pytorch_utils import (
|
27 |
+
load_pytorch_checkpoint_in_flax_state_dict,
|
28 |
+
)
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
from .generation_clip_vision_utils import FlaxCLIPVisionMarianGenerationMixin
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
class FlaxCLIPVisionMarianPreTrainedModel(
|
37 |
+
PushToHubMixin, FlaxCLIPVisionMarianGenerationMixin
|
38 |
+
):
|
39 |
+
r"""
|
40 |
+
Base class for all models.
|
41 |
+
:class:`~transformers.FlaxPreTrainedModel` takes care of storing the configuration of the models and handles
|
42 |
+
methods for loading, downloading and saving models.
|
43 |
+
Class attributes (overridden by derived classes):
|
44 |
+
- **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
|
45 |
+
:class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
|
46 |
+
- **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
|
47 |
+
derived classes of the same architecture adding modules on top of the base model.
|
48 |
+
"""
|
49 |
+
config_class = None
|
50 |
+
base_model_prefix = ""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
config: PretrainedConfig,
|
55 |
+
module: nn.Module,
|
56 |
+
input_shape: Tuple = (1, 1),
|
57 |
+
seed: int = 0,
|
58 |
+
dtype: jnp.dtype = jnp.float32,
|
59 |
+
):
|
60 |
+
if config is None:
|
61 |
+
raise ValueError("config cannot be None")
|
62 |
+
|
63 |
+
if module is None:
|
64 |
+
raise ValueError("module cannot be None")
|
65 |
+
|
66 |
+
# Those are private to be exposed as typed property on derived classes.
|
67 |
+
self._config = config
|
68 |
+
self._module = module
|
69 |
+
|
70 |
+
# Those are public as their type is generic to every derived classes.
|
71 |
+
self.key = PRNGKey(seed)
|
72 |
+
self.dtype = dtype
|
73 |
+
|
74 |
+
# randomly initialized parameters
|
75 |
+
random_params = self.init_weights(self.key, input_shape)
|
76 |
+
|
77 |
+
# save required_params as set
|
78 |
+
self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
|
79 |
+
self.params = random_params
|
80 |
+
|
81 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> Dict:
|
82 |
+
raise NotImplementedError(f"init method has to be implemented for {self}")
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def _from_config(cls, config, **kwargs):
|
86 |
+
"""
|
87 |
+
All context managers that the model should be initialized under go here.
|
88 |
+
"""
|
89 |
+
return cls(config, **kwargs)
|
90 |
+
|
91 |
+
@property
|
92 |
+
def config(self) -> PretrainedConfig:
|
93 |
+
return self._config
|
94 |
+
|
95 |
+
@property
|
96 |
+
def module(self) -> nn.Module:
|
97 |
+
return self._module
|
98 |
+
|
99 |
+
@property
|
100 |
+
def params(self) -> Union[Dict, FrozenDict]:
|
101 |
+
return self._params
|
102 |
+
|
103 |
+
@property
|
104 |
+
def required_params(self) -> Set:
|
105 |
+
return self._required_params
|
106 |
+
|
107 |
+
@params.setter
|
108 |
+
def params(self, params: Union[Dict, FrozenDict]):
|
109 |
+
if isinstance(params, FrozenDict):
|
110 |
+
params = unfreeze(params)
|
111 |
+
param_keys = set(flatten_dict(params).keys())
|
112 |
+
if len(self.required_params - param_keys) > 0:
|
113 |
+
raise ValueError(
|
114 |
+
"Some parameters are missing. Make sure that `params` include the following "
|
115 |
+
f"parameters {self.required_params - param_keys}"
|
116 |
+
)
|
117 |
+
self._params = params
|
118 |
+
|
119 |
+
@classmethod
|
120 |
+
def from_pretrained(
|
121 |
+
cls,
|
122 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
123 |
+
dtype: jnp.dtype = jnp.float32,
|
124 |
+
*model_args,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
|
128 |
+
r"""
|
129 |
+
Instantiate a pretrained flax model from a pre-trained model configuration.
|
130 |
+
The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
|
131 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
132 |
+
task.
|
133 |
+
The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
|
134 |
+
weights are discarded.
|
135 |
+
Parameters:
|
136 |
+
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
|
137 |
+
Can be either:
|
138 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
139 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
140 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
141 |
+
- A path to a `directory` containing model weights saved using
|
142 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
143 |
+
- A path or url to a `pt index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this
|
144 |
+
case, ``from_pt`` should be set to :obj:`True`.
|
145 |
+
model_args (sequence of positional arguments, `optional`):
|
146 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
|
147 |
+
config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`):
|
148 |
+
Can be either:
|
149 |
+
- an instance of a class derived from :class:`~transformers.PretrainedConfig`,
|
150 |
+
- a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.
|
151 |
+
Configuration for the model to use instead of an automatically loaded configuation. Configuration can
|
152 |
+
be automatically loaded when:
|
153 |
+
- The model is a model provided by the library (loaded with the `model id` string of a pretrained
|
154 |
+
model).
|
155 |
+
- The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
|
156 |
+
by supplying the save directory.
|
157 |
+
- The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
|
158 |
+
configuration JSON file named `config.json` is found in the directory.
|
159 |
+
cache_dir (:obj:`Union[str, os.PathLike]`, `optional`):
|
160 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
161 |
+
standard cache should not be used.
|
162 |
+
from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
163 |
+
Load the model weights from a PyTorch checkpoint save file (see docstring of
|
164 |
+
``pretrained_model_name_or_path`` argument).
|
165 |
+
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
166 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
167 |
+
cached versions if they exist.
|
168 |
+
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
169 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
170 |
+
file exists.
|
171 |
+
proxies (:obj:`Dict[str, str], `optional`):
|
172 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
|
173 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
174 |
+
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
|
175 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
176 |
+
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
|
177 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
178 |
+
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
|
179 |
+
identifier allowed by git.
|
180 |
+
kwargs (remaining dictionary of keyword arguments, `optional`):
|
181 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
182 |
+
:obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
|
183 |
+
automatically loaded:
|
184 |
+
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
|
185 |
+
underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
|
186 |
+
already been done)
|
187 |
+
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
|
188 |
+
initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
|
189 |
+
``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
|
190 |
+
with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
|
191 |
+
attribute will be passed to the underlying model's ``__init__`` function.
|
192 |
+
Examples::
|
193 |
+
>>> from transformers import BertConfig, FlaxBertModel
|
194 |
+
>>> # Download model and configuration from huggingface.co and cache.
|
195 |
+
>>> model = FlaxBertModel.from_pretrained('bert-base-cased')
|
196 |
+
>>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
|
197 |
+
>>> model = FlaxBertModel.from_pretrained('./test/saved_model/')
|
198 |
+
>>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
|
199 |
+
>>> config = BertConfig.from_json_file('./pt_model/config.json')
|
200 |
+
>>> model = FlaxBertModel.from_pretrained('./pt_model/pytorch_model.bin', from_pt=True, config=config)
|
201 |
+
"""
|
202 |
+
config = kwargs.pop("config", None)
|
203 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
204 |
+
from_pt = kwargs.pop("from_pt", False)
|
205 |
+
force_download = kwargs.pop("force_download", False)
|
206 |
+
resume_download = kwargs.pop("resume_download", False)
|
207 |
+
proxies = kwargs.pop("proxies", None)
|
208 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
209 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
210 |
+
revision = kwargs.pop("revision", None)
|
211 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
212 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
213 |
+
|
214 |
+
user_agent = {
|
215 |
+
"file_type": "model",
|
216 |
+
"framework": "flax",
|
217 |
+
"from_auto_class": from_auto_class,
|
218 |
+
}
|
219 |
+
if from_pipeline is not None:
|
220 |
+
user_agent["using_pipeline"] = from_pipeline
|
221 |
+
|
222 |
+
if is_offline_mode() and not local_files_only:
|
223 |
+
logger.info("Offline mode: forcing local_files_only=True")
|
224 |
+
local_files_only = True
|
225 |
+
|
226 |
+
# Load config if we don't provide a configuration
|
227 |
+
if not isinstance(config, PretrainedConfig):
|
228 |
+
config_path = (
|
229 |
+
config if config is not None else pretrained_model_name_or_path
|
230 |
+
)
|
231 |
+
config, model_kwargs = cls.config_class.from_pretrained(
|
232 |
+
config_path,
|
233 |
+
*model_args,
|
234 |
+
cache_dir=cache_dir,
|
235 |
+
return_unused_kwargs=True,
|
236 |
+
force_download=force_download,
|
237 |
+
resume_download=resume_download,
|
238 |
+
proxies=proxies,
|
239 |
+
local_files_only=local_files_only,
|
240 |
+
use_auth_token=use_auth_token,
|
241 |
+
revision=revision,
|
242 |
+
_from_auto=from_auto_class,
|
243 |
+
_from_pipeline=from_pipeline,
|
244 |
+
**kwargs,
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
model_kwargs = kwargs
|
248 |
+
|
249 |
+
# Add the dtype to model_kwargs
|
250 |
+
model_kwargs["dtype"] = dtype
|
251 |
+
|
252 |
+
# Load model
|
253 |
+
if pretrained_model_name_or_path is not None:
|
254 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
255 |
+
if from_pt and os.path.isfile(
|
256 |
+
os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
257 |
+
):
|
258 |
+
# Load from a PyTorch checkpoint
|
259 |
+
archive_file = os.path.join(
|
260 |
+
pretrained_model_name_or_path, WEIGHTS_NAME
|
261 |
+
)
|
262 |
+
elif os.path.isfile(
|
263 |
+
os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
|
264 |
+
):
|
265 |
+
# Load from a Flax checkpoint
|
266 |
+
archive_file = os.path.join(
|
267 |
+
pretrained_model_name_or_path, FLAX_WEIGHTS_NAME
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
raise EnvironmentError(
|
271 |
+
f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory "
|
272 |
+
f"{pretrained_model_name_or_path} or `from_pt` set to False"
|
273 |
+
)
|
274 |
+
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(
|
275 |
+
pretrained_model_name_or_path
|
276 |
+
):
|
277 |
+
archive_file = pretrained_model_name_or_path
|
278 |
+
else:
|
279 |
+
archive_file = hf_bucket_url(
|
280 |
+
pretrained_model_name_or_path,
|
281 |
+
filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME,
|
282 |
+
revision=revision,
|
283 |
+
)
|
284 |
+
|
285 |
+
# redirect to the cache, if necessary
|
286 |
+
try:
|
287 |
+
resolved_archive_file = cached_path(
|
288 |
+
archive_file,
|
289 |
+
cache_dir=cache_dir,
|
290 |
+
force_download=force_download,
|
291 |
+
proxies=proxies,
|
292 |
+
resume_download=resume_download,
|
293 |
+
local_files_only=local_files_only,
|
294 |
+
use_auth_token=use_auth_token,
|
295 |
+
user_agent=user_agent,
|
296 |
+
)
|
297 |
+
except EnvironmentError as err:
|
298 |
+
logger.error(err)
|
299 |
+
msg = (
|
300 |
+
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
|
301 |
+
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
|
302 |
+
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n"
|
303 |
+
)
|
304 |
+
raise EnvironmentError(msg)
|
305 |
+
|
306 |
+
if resolved_archive_file == archive_file:
|
307 |
+
logger.info(f"loading weights file {archive_file}")
|
308 |
+
else:
|
309 |
+
logger.info(
|
310 |
+
f"loading weights file {archive_file} from cache at {resolved_archive_file}"
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
resolved_archive_file = None
|
314 |
+
|
315 |
+
# init random models
|
316 |
+
model = cls(config, *model_args, **model_kwargs)
|
317 |
+
|
318 |
+
if from_pt:
|
319 |
+
state = load_pytorch_checkpoint_in_flax_state_dict(
|
320 |
+
model, resolved_archive_file
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
with open(resolved_archive_file, "rb") as state_f:
|
324 |
+
try:
|
325 |
+
state = from_bytes(cls, state_f.read())
|
326 |
+
except UnpicklingError:
|
327 |
+
raise EnvironmentError(
|
328 |
+
f"Unable to convert {archive_file} to Flax deserializable object. "
|
329 |
+
)
|
330 |
+
# make sure all arrays are stored as jnp.arrays
|
331 |
+
# NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
|
332 |
+
# https://github.com/google/flax/issues/1261
|
333 |
+
state = jax.tree_util.tree_map(jnp.array, state)
|
334 |
+
|
335 |
+
# if model is base model only use model_prefix key
|
336 |
+
if (
|
337 |
+
cls.base_model_prefix not in dict(model.params)
|
338 |
+
and cls.base_model_prefix in state
|
339 |
+
):
|
340 |
+
state = state[cls.base_model_prefix]
|
341 |
+
|
342 |
+
# if model is head model and we are loading weights from base model
|
343 |
+
# we initialize new params dict with base_model_prefix
|
344 |
+
if (
|
345 |
+
cls.base_model_prefix in dict(model.params)
|
346 |
+
and cls.base_model_prefix not in state
|
347 |
+
):
|
348 |
+
state = {cls.base_model_prefix: state}
|
349 |
+
|
350 |
+
# flatten dicts
|
351 |
+
state = flatten_dict(state)
|
352 |
+
|
353 |
+
random_state = flatten_dict(unfreeze(model.params))
|
354 |
+
|
355 |
+
missing_keys = model.required_params - set(state.keys())
|
356 |
+
unexpected_keys = set(state.keys()) - model.required_params
|
357 |
+
|
358 |
+
# add missing keys as random parameters
|
359 |
+
for missing_key in missing_keys:
|
360 |
+
state[missing_key] = random_state[missing_key]
|
361 |
+
|
362 |
+
# remove unexpected keys to not be saved again
|
363 |
+
for unexpected_key in unexpected_keys:
|
364 |
+
del state[unexpected_key]
|
365 |
+
|
366 |
+
if len(unexpected_keys) > 0:
|
367 |
+
logger.warning(
|
368 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
|
369 |
+
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
|
370 |
+
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
|
371 |
+
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
|
372 |
+
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
|
373 |
+
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
374 |
+
)
|
375 |
+
else:
|
376 |
+
logger.info(
|
377 |
+
f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n"
|
378 |
+
)
|
379 |
+
|
380 |
+
if len(missing_keys) > 0:
|
381 |
+
logger.warning(
|
382 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
|
383 |
+
f"and are newly initialized: {missing_keys}\n"
|
384 |
+
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
385 |
+
)
|
386 |
+
else:
|
387 |
+
logger.info(
|
388 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
|
389 |
+
f"If your task is similar to the task the model of the checkpoint was trained on, "
|
390 |
+
f"you can already use {model.__class__.__name__} for predictions without further training."
|
391 |
+
)
|
392 |
+
|
393 |
+
# set correct parameters
|
394 |
+
model.params = unflatten_dict(state)
|
395 |
+
|
396 |
+
return model
|
397 |
+
|
398 |
+
def save_pretrained(
|
399 |
+
self,
|
400 |
+
save_directory: Union[str, os.PathLike],
|
401 |
+
params=None,
|
402 |
+
push_to_hub=False,
|
403 |
+
**kwargs,
|
404 |
+
):
|
405 |
+
"""
|
406 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
407 |
+
`:func:`~transformers.FlaxPreTrainedModel.from_pretrained`` class method
|
408 |
+
Arguments:
|
409 |
+
save_directory (:obj:`str` or :obj:`os.PathLike`):
|
410 |
+
Directory to which to save. Will be created if it doesn't exist.
|
411 |
+
push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
412 |
+
Whether or not to push your model to the Hugging Face model hub after saving it.
|
413 |
+
.. warning::
|
414 |
+
Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with
|
415 |
+
:obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are
|
416 |
+
pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory
|
417 |
+
instead.
|
418 |
+
kwargs:
|
419 |
+
Additional key word arguments passed along to the
|
420 |
+
:meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
|
421 |
+
"""
|
422 |
+
if os.path.isfile(save_directory):
|
423 |
+
logger.error(
|
424 |
+
f"Provided path ({save_directory}) should be a directory, not a file"
|
425 |
+
)
|
426 |
+
return
|
427 |
+
|
428 |
+
if push_to_hub:
|
429 |
+
commit_message = kwargs.pop("commit_message", None)
|
430 |
+
repo = self._create_or_get_repo(save_directory, **kwargs)
|
431 |
+
|
432 |
+
os.makedirs(save_directory, exist_ok=True)
|
433 |
+
|
434 |
+
# get abs dir
|
435 |
+
save_directory = os.path.abspath(save_directory)
|
436 |
+
# save config as well
|
437 |
+
self.config.architectures = [self.__class__.__name__[4:]]
|
438 |
+
self.config.save_pretrained(save_directory)
|
439 |
+
|
440 |
+
# save model
|
441 |
+
output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
|
442 |
+
with open(output_model_file, "wb") as f:
|
443 |
+
params = params if params is not None else self.params
|
444 |
+
model_bytes = to_bytes(params)
|
445 |
+
f.write(model_bytes)
|
446 |
+
|
447 |
+
logger.info(f"Model weights saved in {output_model_file}")
|
448 |
+
|
449 |
+
if push_to_hub:
|
450 |
+
url = self._push_to_hub(repo, commit_message=commit_message)
|
451 |
+
logger.info(f"Model pushed to the hub in this commit: {url}")
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pillow==8.2.0
|
2 |
+
aiofiles==0.4.0
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
git+https://github.com/huggingface/transformers.git
|
6 |
+
datasets >= 1.1.3
|
7 |
+
jax>=0.2.8
|
8 |
+
jaxlib>=0.1.59
|
9 |
+
flax>=0.3.4
|
10 |
+
optax>=0.0.9
|
11 |
+
sentencepiece
|
12 |
+
mtranslate
|
13 |
+
streamlit
|