Spaces:
Build error
Build error
import nmslib | |
import numpy as np | |
import streamlit as st | |
from transformers import AutoTokenizer, CLIPProcessor, ViTFeatureExtractor | |
from config import MODEL_LIST | |
from koclip import FlaxHybridCLIP | |
from global_session import GlobalState | |
from threading import Lock | |
def load_index(img_file): | |
state = GlobalState(img_file) | |
if not hasattr(state, '_lock'): | |
state._lock = Lock() | |
print(f"Locking loading of features : {img_file} to avoid concurrent caching.") | |
with state._lock: | |
cached_index = load_index_cached(img_file) | |
print(f"Unlocking loading of features : {img_file} to avoid concurrent caching.") | |
return cached_index | |
def load_index_cached(img_file): | |
filenames, embeddings = [], [] | |
with open(img_file, "r") as f: | |
for line in f: | |
cols = line.strip().split("\t") | |
filename = cols[0] | |
embedding = [float(x) for x in cols[1].split(",")] | |
filenames.append(filename) | |
embeddings.append(embedding) | |
embeddings = np.array(embeddings) | |
index = nmslib.init(method="hnsw", space="cosinesimil") | |
index.addDataPointBatch(embeddings) | |
index.createIndex({"post": 2}, print_progress=True) | |
return filenames, index | |
def load_model(model_name="koclip/koclip-base"): | |
state = GlobalState(model_name) | |
if not hasattr(state, '_lock'): | |
state._lock = Lock() | |
print(f"Locking loading of model : {model_name} to avoid concurrent caching.") | |
with state._lock: | |
cached_model = load_model_cached(model_name) | |
print(f"Unlocking loading of model : {model_name} to avoid concurrent caching.") | |
return cached_model | |
def load_model_cached(model_name): | |
assert model_name in {f"koclip/{model}" for model in MODEL_LIST} | |
model = FlaxHybridCLIP.from_pretrained(model_name) | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
processor.tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large") | |
if model_name == "koclip/koclip-large": | |
processor.feature_extractor = ViTFeatureExtractor.from_pretrained( | |
"google/vit-large-patch16-224" | |
) | |
return model, processor | |