import streamlit as st import jax.numpy as jnp from transformers import AutoTokenizer from transformers.models.t5.modeling_flax_t5 import shift_tokens_right from t5_vae_flax_alt.src.t5_vae import FlaxT5VaeForAutoencoding st.set_page_config( page_title="T5-VAE", page_icon="😐", layout="wide", initial_sidebar_state="expanded" ) st.title('T5-VAE 🙁😐🙂') st.markdown(''' This is a variational autoencoder trained on text. It allows interpolating on text at a high level, try it out! See how it works [here](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html). ''') st.markdown(''' ### [t5-vae-python](https://huggingface.co/flax-community/t5-vae-python) This model is trained on lines of Python code from GitHub ([dataset](https://huggingface.co/datasets/Fraser/python-lines)). ''') @st.cache(allow_output_mutation=True) def get_model(): tokenizer = AutoTokenizer.from_pretrained("t5-base") model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-python") assert model.params['t5']['shared']['embedding'].shape[0] == len(tokenizer), "T5 Tokenizer doesn't match T5Vae embedding size." return model, tokenizer model, tokenizer = get_model() def add_decoder_input_ids(examples): arr_input_ids = jnp.array(examples["input_ids"]) pad = tokenizer.pad_token_id * jnp.ones((arr_input_ids.shape[0], 1), dtype=jnp.int32) arr_pad_input_ids = jnp.concatenate((arr_input_ids, pad), axis=1) examples['decoder_input_ids'] = shift_tokens_right(arr_pad_input_ids, tokenizer.pad_token_id, model.config.decoder_start_token_id) arr_attention_mask = jnp.array(examples['attention_mask']) ones = jnp.ones((arr_attention_mask.shape[0], 1), dtype=jnp.int32) examples['decoder_attention_mask'] = jnp.concatenate((ones, arr_attention_mask), axis=1) for k in ['decoder_input_ids', 'decoder_attention_mask']: examples[k] = examples[k].tolist() return examples def prepare_inputs(inputs): for k, v in inputs.items(): inputs[k] = jnp.array(v) return add_decoder_input_ids(inputs) def get_latent(text): return model(**prepare_inputs(tokenizer([text]))).latent_codes[0] def tokens_from_latent(latent_codes): model.config.is_encoder_decoder = True output_ids = model.generate( latent_codes=jnp.array([latent_codes]), bos_token_id=model.config.decoder_start_token_id, min_length=1, max_length=32, ) return output_ids def slerp(ratio, t1, t2): ''' Perform a spherical interpolation between 2 vectors. Most of the volume of a high-dimensional orange is in the skin, not the pulp. This also applies for multivariate Gaussian distributions. To that end we can interpolate between samples by following the surface of a n-dimensional sphere rather than a straight line. Args: ratio: Interpolation ratio. t1: Tensor1 t2: Tensor2 ''' low_norm = t1 / jnp.linalg.norm(t1, axis=1, keepdims=True) high_norm = t2 / jnp.linalg.norm(t2, axis=1, keepdims=True) omega = jnp.arccos((low_norm * high_norm).sum(1)) so = jnp.sin(omega) res = (jnp.sin((1.0 - ratio) * omega) / so)[0] * t1 + (jnp.sin(ratio * omega) / so)[0] * t2 return res def decode(cnt, ratio, txt_1, txt_2): if not txt_1 or not txt_2: return '' cnt.write('Getting latents...') lt_1, lt_2 = get_latent(txt_1), get_latent(txt_2) lt_new = slerp(ratio, lt_1, lt_2) cnt.write('Decoding latent...') tkns = tokens_from_latent(lt_new) return tokenizer.decode(tkns.sequences[0], skip_special_tokens=True) in_1 = st.text_input("A line of Python code.", "x = a - 1") in_2 = st.text_input("Another line of Python code.", "x = a + 10 * 2") r = st.slider('Python Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5) container = st.empty() container.write('Loading...') out = decode(container, r, in_1, in_2) container.empty() st.write('Output: ' + out) st.markdown(''' ### [t5-vae-wiki](https://huggingface.co/flax-community/t5-vae-wiki) This model is trained on just 5% of the sentences on wikipedia. We'll release another model trained on the full [dataset](https://github.com/ChunyuanLI/Optimus/blob/master/download_datasets.md) soon. ''') @st.cache(allow_output_mutation=True) def get_wiki_model(): tokenizer = AutoTokenizer.from_pretrained("t5-base") model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-wiki") assert model.params['t5']['shared']['embedding'].shape[0] == len(tokenizer), "T5 Tokenizer doesn't match T5Vae embedding size." return model, tokenizer model, tokenizer = get_wiki_model() in_1 = st.text_input("A sentence.", "Children are looking for the water to be clear.") in_2 = st.text_input("Another sentence.", "There are two people playing soccer.") r = st.slider('English Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5) container = st.empty() container.write('Loading...') out = decode(container, r, in_1, in_2) container.empty() st.write('Output: ' + out) st.markdown(''' Try arithmetic in latent space. Here latent codes for each sentence are found and arithmetic is done with them. Here it runs the sum `C + (B - A) = ?` ''') def arithmetic(cnt, txt_a, txt_b, txt_c): if not txt_a or not txt_b or not txt_c: return '' cnt.write('getting latents...') lt_a, lt_b, lt_c = get_latent(txt_a), get_latent(txt_b), get_latent(txt_c) lt_d = lt_c + (lt_b - lt_a) cnt.write('decoding C + (B - A)...') tkns = tokens_from_latent(lt_d) return tokenizer.decode(tkns.sequences[0], skip_special_tokens=True) in_a = st.text_input("A", "A girl makes a silly face.") in_b = st.text_input("B", "Two girls are playing soccer.") in_c = st.text_input("C", "A girl is looking through a microscope.") st.markdown(''' A is to B as C is to... ''') container = st.empty() container.write('Loading...') out = arithmetic(container, in_a, in_b, in_c) container.empty() st.write('Output: ' + out)