Spaces:
Runtime error
Runtime error
File size: 17,784 Bytes
b1bd80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# 1st edit by https://github.com/comfyanonymous/ComfyUI
# 2nd edit by Forge Official
import torch
import copy
import inspect
import ldm_patched.modules.utils
import ldm_patched.modules.model_management
extra_weight_calculators = {}
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
self.size = size
self.model = model
self.patches = {}
self.backup = {}
self.object_patches = {}
self.object_patches_backup = {}
self.model_options = {"transformer_options":{}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
if current_device is None:
self.current_device = self.offload_device
else:
self.current_device = current_device
self.weight_inplace_update = weight_inplace_update
def model_size(self):
if self.size > 0:
return self.size
model_sd = self.model.state_dict()
self.size = ldm_patched.modules.model_management.module_size(self.model)
self.model_keys = set(model_sd.keys())
return self.size
def clone(self):
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.model_keys = self.model_keys
return n
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def memory_required(self, input_shape):
return self.model.memory_required(input_shape=input_shape)
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
else:
self.model_options["sampler_cfg_function"] = sampler_cfg_function
if disable_cfg1_optimization:
self.model_options["disable_cfg1_optimization"] = True
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
if disable_cfg1_optimization:
self.model_options["disable_cfg1_optimization"] = True
def set_model_unet_function_wrapper(self, unet_wrapper_function):
self.model_options["model_function_wrapper"] = unet_wrapper_function
def set_model_vae_encode_wrapper(self, wrapper_function):
self.model_options["model_vae_encode_wrapper"] = wrapper_function
def set_model_vae_decode_wrapper(self, wrapper_function):
self.model_options["model_vae_decode_wrapper"] = wrapper_function
def set_model_patch(self, patch, name):
to = self.model_options["transformer_options"]
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
to = self.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if name not in to["patches_replace"]:
to["patches_replace"][name] = {}
if transformer_index is not None:
block = (block_name, number, transformer_index)
else:
block = (block_name, number)
to["patches_replace"][name][block] = patch
def set_model_attn1_patch(self, patch):
self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch):
self.set_model_patch(patch, "attn2_patch")
def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
def set_model_attn1_output_patch(self, patch):
self.set_model_patch(patch, "attn1_output_patch")
def set_model_attn2_output_patch(self, patch):
self.set_model_patch(patch, "attn2_output_patch")
def set_model_input_block_patch(self, patch):
self.set_model_patch(patch, "input_block_patch")
def set_model_input_block_patch_after_skip(self, patch):
self.set_model_patch(patch, "input_block_patch_after_skip")
def set_model_output_block_patch(self, patch):
self.set_model_patch(patch, "output_block_patch")
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
def model_patches_to(self, device):
to = self.model_options["transformer_options"]
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
patch_list[i] = patch_list[i].to(device)
if "patches_replace" in to:
patches = to["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
if hasattr(patch_list[k], "to"):
patch_list[k] = patch_list[k].to(device)
if "model_function_wrapper" in self.model_options:
wrap_func = self.model_options["model_function_wrapper"]
if hasattr(wrap_func, "to"):
self.model_options["model_function_wrapper"] = wrap_func.to(device)
def model_dtype(self):
if hasattr(self.model, "get_dtype"):
return self.model.get_dtype()
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
p = set()
for k in patches:
if k in self.model_keys:
p.add(k)
current_patches = self.patches.get(k, [])
current_patches.append((strength_patch, patches[k], strength_model))
self.patches[k] = current_patches
return list(p)
def get_key_patches(self, filter_prefix=None):
ldm_patched.modules.model_management.unload_model_clones(self)
model_sd = self.model_state_dict()
p = {}
for k in model_sd:
if filter_prefix is not None:
if not k.startswith(filter_prefix):
continue
if k in self.patches:
p[k] = [model_sd[k]] + self.patches[k]
else:
p[k] = (model_sd[k],)
return p
def model_state_dict(self, filter_prefix=None):
sd = self.model.state_dict()
keys = list(sd.keys())
if filter_prefix is not None:
for k in keys:
if not k.startswith(filter_prefix):
sd.pop(k)
return sd
def patch_model(self, device_to=None, patch_weights=True):
for k in self.object_patches:
old = ldm_patched.modules.utils.get_attr(self.model, k)
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
ldm_patched.modules.utils.set_attr_raw(self.model, k, self.object_patches[k])
if patch_weights:
model_sd = self.model_state_dict()
for key in self.patches:
if key not in model_sd:
print("could not patch. key doesn't exist in model:", key)
continue
weight = model_sd[key]
inplace_update = self.weight_inplace_update
if key not in self.backup:
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
if device_to is not None:
temp_weight = ldm_patched.modules.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
if inplace_update:
ldm_patched.modules.utils.copy_to_param(self.model, key, out_weight)
else:
ldm_patched.modules.utils.set_attr(self.model, key, out_weight)
del temp_weight
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
return self.model
def calculate_weight(self, patches, weight, key):
for p in patches:
alpha = p[0]
v = p[1]
strength_model = p[2]
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (self.calculate_weight(v[1:], v[0].clone(), key), )
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "diff":
w1 = v[0]
if alpha != 0.0:
if w1.shape != weight.shape:
if w1.ndim == weight.ndim == 4:
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
print(f'Merged with {key} channel changed to {new_shape}')
new_diff = alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
new_weight = torch.zeros(size=new_shape).to(weight)
new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight
new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff
new_weight = new_weight.contiguous().clone()
weight = new_weight
else:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lora": #lora/locon
mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
if v[3] is not None:
#locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32))
else:
w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32))
else:
w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha *= v[2] / dim
try:
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha *= v[2] / w1b.shape[0]
w2a = v[3]
w2b = v[4]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32))
else:
m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32))
m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32))
try:
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "glora":
if v[4] is not None:
alpha *= v[4] / v[0].shape[0]
a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
elif patch_type in extra_weight_calculators:
weight = extra_weight_calculators[patch_type](weight, alpha, v)
else:
print("patch type not recognized", patch_type, key)
return weight
def unpatch_model(self, device_to=None):
keys = list(self.backup.keys())
if self.weight_inplace_update:
for k in keys:
ldm_patched.modules.utils.copy_to_param(self.model, k, self.backup[k])
else:
for k in keys:
ldm_patched.modules.utils.set_attr(self.model, k, self.backup[k])
self.backup = {}
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
keys = list(self.object_patches_backup.keys())
for k in keys:
ldm_patched.modules.utils.set_attr_raw(self.model, k, self.object_patches_backup[k])
self.object_patches_backup = {}
|