File size: 27,646 Bytes
b1bd80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Taken from https://github.com/comfyanonymous/ComfyUI
# This file is only for reference, and not used in the backend or runtime.


import torch

from ldm_patched.modules import model_management
from ldm_patched.ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
import yaml

import ldm_patched.modules.utils

from . import clip_vision
from . import gligen
from . import diffusers_convert
from . import model_base
from . import model_detection

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip

import ldm_patched.modules.model_patcher
import ldm_patched.modules.lora
import ldm_patched.t2ia.adapter
import ldm_patched.modules.supported_models_base
import ldm_patched.taesd.taesd

def load_model_weights(model, sd):
    m, u = model.load_state_dict(sd, strict=False)
    m = set(m)
    unexpected_keys = set(u)

    k = list(sd.keys())
    for x in k:
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("extra", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

    sd = ldm_patched.modules.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)


def load_lora_for_models(model, clip, lora, strength_model, strength_clip, filename='default'):
    model_flag = type(model.model).__name__ if model is not None else 'default'

    unet_keys = ldm_patched.modules.lora.model_lora_keys_unet(model.model) if model is not None else {}
    clip_keys = ldm_patched.modules.lora.model_lora_keys_clip(clip.cond_stage_model) if clip is not None else {}

    lora_unmatch = lora
    lora_unet, lora_unmatch = ldm_patched.modules.lora.load_lora(lora_unmatch, unet_keys)
    lora_clip, lora_unmatch = ldm_patched.modules.lora.load_lora(lora_unmatch, clip_keys)

    if len(lora_unmatch) > 12:
        print(f'[LORA] LoRA version mismatch for {model_flag}: {filename}')
        return model, clip

    if len(lora_unmatch) > 0:
        print(f'[LORA] Loading {filename} for {model_flag} with unmatched keys {list(lora_unmatch.keys())}')

    new_model = model.clone() if model is not None else None
    new_clip = clip.clone() if clip is not None else None

    if new_model is not None and len(lora_unet) > 0:
        loaded_keys = new_model.add_patches(lora_unet, strength_model)
        skipped_keys = [item for item in lora_unet if item not in loaded_keys]
        if len(skipped_keys) > 12:
            print(f'[LORA] Mismatch {filename} for {model_flag}-UNet with {len(skipped_keys)} keys mismatched in {len(loaded_keys)} keys')
        else:
            print(f'[LORA] Loaded {filename} for {model_flag}-UNet with {len(loaded_keys)} keys at weight {strength_model} (skipped {len(skipped_keys)} keys)')
            model = new_model

    if new_clip is not None and len(lora_clip) > 0:
        loaded_keys = new_clip.add_patches(lora_clip, strength_clip)
        skipped_keys = [item for item in lora_clip if item not in loaded_keys]
        if len(skipped_keys) > 12:
            print(f'[LORA] Mismatch {filename} for {model_flag}-CLIP with {len(skipped_keys)} keys mismatched in {len(loaded_keys)} keys')
        else:
            print(f'[LORA] Loaded {filename} for {model_flag}-CLIP with {len(loaded_keys)} keys at weight {strength_clip} (skipped {len(skipped_keys)} keys)')
            clip = new_clip

    return model, clip


class CLIP:
    def __init__(self, target=None, embedding_directory=None, no_init=False):
        if no_init:
            return
        params = target.params.copy()
        clip = target.clip
        tokenizer = target.tokenizer

        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
        params['device'] = offload_device
        params['dtype'] = model_management.text_encoder_dtype(load_device)

        self.cond_stage_model = clip(**(params))

        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
        self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
        self.layer_idx = None

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
        n.layer_idx = self.layer_idx
        return n

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)

    def clip_layer(self, layer_idx):
        self.layer_idx = layer_idx

    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)

    def encode_from_tokens(self, tokens, return_pooled=False):
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
        else:
            self.cond_stage_model.reset_clip_layer()

        self.load_model()
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
        if return_pooled:
            return cond, pooled
        return cond

    def encode(self, text):
        tokens = self.tokenize(text)
        return self.encode_from_tokens(tokens)

    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)

    def get_sd(self):
        return self.cond_stage_model.state_dict()

    def load_model(self):
        model_management.load_model_gpu(self.patcher)
        return self.patcher

    def get_key_patches(self):
        return self.patcher.get_key_patches()

class VAE:
    def __init__(self, sd=None, device=None, config=None, dtype=None, no_init=False):
        if no_init:
            return

        if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
            sd = diffusers_convert.convert_vae_state_dict(sd)

        self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
        self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
        self.downscale_ratio = 8
        self.latent_channels = 4

        if config is None:
            if "decoder.mid.block_1.mix_factor" in sd:
                encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
                decoder_config = encoder_config.copy()
                decoder_config["video_kernel_size"] = [3, 1, 1]
                decoder_config["alpha"] = 0.0
                self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "ldm_patched.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
                                                            encoder_config={'target': "ldm_patched.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
                                                            decoder_config={'target': "ldm_patched.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
            elif "taesd_decoder.1.weight" in sd:
                self.first_stage_model = ldm_patched.taesd.taesd.TAESD()
            else:
                #default SD1.x/SD2.x VAE parameters
                ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}

                if 'encoder.down.2.downsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
                    ddconfig['ch_mult'] = [1, 2, 4]
                    self.downscale_ratio = 4

                self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
        else:
            self.first_stage_model = AutoencoderKL(**(config['params']))
        self.first_stage_model = self.first_stage_model.eval()

        m, u = self.first_stage_model.load_state_dict(sd, strict=False)
        if len(m) > 0:
            print("Missing VAE keys", m)

        if len(u) > 0:
            print("Leftover VAE keys", u)

        if device is None:
            device = model_management.vae_device()
        self.device = device
        offload_device = model_management.vae_offload_device()
        if dtype is None:
            dtype = model_management.vae_dtype()
        self.vae_dtype = dtype
        self.first_stage_model.to(self.vae_dtype)
        self.output_device = model_management.intermediate_device()

        self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)

    def clone(self):
        n = VAE(no_init=True)
        n.patcher = self.patcher.clone()
        n.memory_used_encode = self.memory_used_encode
        n.memory_used_decode = self.memory_used_decode
        n.downscale_ratio = self.downscale_ratio
        n.latent_channels = self.latent_channels
        n.first_stage_model = self.first_stage_model
        n.device = self.device
        n.vae_dtype = self.vae_dtype
        n.output_device = self.output_device
        return n

    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
        steps = samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
        steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = ldm_patched.modules.utils.ProgressBar(steps, title='VAE tiled decode')

        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
        output = torch.clamp((
            (ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
            ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
             ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar))
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = ldm_patched.modules.utils.ProgressBar(steps, title='VAE tiled encode')

        encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
        samples = ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
        samples += ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
        samples += ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
        samples /= 3.0
        return samples

    def decode_inner(self, samples_in):
        if model_management.VAE_ALWAYS_TILED:
            return self.decode_tiled(samples_in).to(self.output_device)

        try:
            memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
            model_management.load_models_gpu([self.patcher], memory_required=memory_used)
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int(free_memory / memory_used)
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device)
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

        pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
        return pixel_samples

    def decode(self, samples_in):
        wrapper = self.patcher.model_options.get('model_vae_decode_wrapper', None)
        if wrapper is None:
            return self.decode_inner(samples_in)
        else:
            return wrapper(self.decode_inner, samples_in)

    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
        model_management.load_model_gpu(self.patcher)
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
        return output.movedim(1,-1)

    def encode_inner(self, pixel_samples):
        if model_management.VAE_ALWAYS_TILED:
            return self.encode_tiled(pixel_samples)

        pixel_samples = pixel_samples.movedim(-1,1)
        try:
            memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
            model_management.load_models_gpu([self.patcher], memory_required=memory_used)
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int(free_memory / memory_used)
            batch_number = max(1, batch_number)
            samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device)
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()

        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

        return samples

    def encode(self, pixel_samples):
        wrapper = self.patcher.model_options.get('model_vae_encode_wrapper', None)
        if wrapper is None:
            return self.encode_inner(pixel_samples)
        else:
            return wrapper(self.encode_inner, pixel_samples)

    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.load_model_gpu(self.patcher)
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
        return samples

    def get_sd(self):
        return self.first_stage_model.state_dict()

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
    model_data = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True)
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = ldm_patched.t2ia.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(ldm_patched.modules.utils.load_torch_file(p, safe_load=True))

    class EmptyClass:
        pass

    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = ldm_patched.modules.utils.transformers_convert(clip_data[i], "", "text_model.", 32)

    clip_target = EmptyClass()
    clip_target.params = {}
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
    else:
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
    return clip

def load_gligen(ckpt_path):
    data = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True)
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())

def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
    #TODO: this function is a mess and should be removed eventually
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config.pop("use_fp16")
                if fp16:
                    unet_config["dtype"] = torch.float16

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    model_type = model_base.ModelType.EPS

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            model_type = model_base.ModelType.V_PREDICTION

    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    if state_dict is None:
        state_dict = ldm_patched.modules.utils.load_torch_file(ckpt_path)

    class EmptyClass:
        pass

    model_config = ldm_patched.modules.supported_models_base.BASE({})

    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
    model_config.unet_config = model_detection.convert_config(unet_config)

    if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
    else:
        model = model_base.BaseModel(model_config, model_type=model_type)

    if config['model']["target"].endswith("LatentInpaintDiffusion"):
        model.set_inpaint()

    if fp16:
        model = model.half()

    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True)
        vae = VAE(sd=vae_sd, config=vae_config)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
        clip_target.params = clip_config.get("params", {})
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
            clip = CLIP(clip_target, embedding_directory=embedding_directory)
            w.cond_stage_model = clip.cond_stage_model.clip_h
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
            clip = CLIP(clip_target, embedding_directory=embedding_directory)
            w.cond_stage_model = clip.cond_stage_model.clip_l
        load_clip_weights(w, state_dict)

    return (ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)

def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
    sd = ldm_patched.modules.utils.load_torch_file(ckpt_path)
    sd_keys = sd.keys()
    clip = None
    clipvision = None
    vae = None
    model = None
    model_patcher = None
    clip_target = None

    parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.")
    unet_dtype = model_management.unet_dtype(model_params=parameters)
    load_device = model_management.get_torch_device()
    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)

    class WeightsLoader(torch.nn.Module):
        pass

    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
    model_config.set_manual_cast(manual_cast_dtype)

    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))

    if model_config.clip_vision_prefix is not None:
        if output_clipvision:
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)

    if output_model:
        inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
        offload_device = model_management.unet_offload_device()
        model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
        model.load_model_weights(sd, "model.diffusion_model.")

    if output_vae:
        vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
        vae_sd = model_config.process_vae_state_dict(vae_sd)
        vae = VAE(sd=vae_sd)

    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        if clip_target is not None:
            clip = CLIP(clip_target, embedding_directory=embedding_directory)
            w.cond_stage_model = clip.cond_stage_model
            sd = model_config.process_clip_state_dict(sd)
            load_model_weights(w, sd)

    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)

    if output_model:
        model_patcher = ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
        if inital_load_device != torch.device("cpu"):
            print("loaded straight to GPU")
            model_management.load_model_gpu(model_patcher)

    return (model_patcher, clip, vae, clipvision)


def load_unet_state_dict(sd): #load unet in diffusers format
    parameters = ldm_patched.modules.utils.calculate_parameters(sd)
    unet_dtype = model_management.unet_dtype(model_params=parameters)
    load_device = model_management.get_torch_device()
    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)

    if "input_blocks.0.0.weight" in sd: #ldm
        model_config = model_detection.model_config_from_unet(sd, "", unet_dtype)
        if model_config is None:
            return None
        new_sd = sd

    else: #diffusers
        model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype)
        if model_config is None:
            return None

        diffusers_keys = ldm_patched.modules.utils.unet_to_diffusers(model_config.unet_config)

        new_sd = {}
        for k in diffusers_keys:
            if k in sd:
                new_sd[diffusers_keys[k]] = sd.pop(k)
            else:
                print(diffusers_keys[k], k)
    offload_device = model_management.unet_offload_device()
    model_config.set_manual_cast(manual_cast_dtype)
    model = model_config.get_model(new_sd, "")
    model = model.to(offload_device)
    model.load_model_weights(new_sd, "")
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys in unet:", left_over)
    return ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)

def load_unet(unet_path):
    sd = ldm_patched.modules.utils.load_torch_file(unet_path)
    model = load_unet_state_dict(sd)
    if model is None:
        print("ERROR UNSUPPORTED UNET", unet_path)
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
    return model

def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None):
    clip_sd = None
    load_models = [model]
    if clip is not None:
        load_models.append(clip.load_model())
        clip_sd = clip.get_sd()

    model_management.load_models_gpu(load_models)
    clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
    sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd)
    ldm_patched.modules.utils.save_torch_file(sd, output_path, metadata=metadata)