Spaces:
Runtime error
Runtime error
File size: 27,646 Bytes
b1bd80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
# Taken from https://github.com/comfyanonymous/ComfyUI
# This file is only for reference, and not used in the backend or runtime.
import torch
from ldm_patched.modules import model_management
from ldm_patched.ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
import yaml
import ldm_patched.modules.utils
from . import clip_vision
from . import gligen
from . import diffusers_convert
from . import model_base
from . import model_detection
from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip
import ldm_patched.modules.model_patcher
import ldm_patched.modules.lora
import ldm_patched.t2ia.adapter
import ldm_patched.modules.supported_models_base
import ldm_patched.taesd.taesd
def load_model_weights(model, sd):
m, u = model.load_state_dict(sd, strict=False)
m = set(m)
unexpected_keys = set(u)
k = list(sd.keys())
for x in k:
if x not in unexpected_keys:
w = sd.pop(x)
del w
if len(m) > 0:
print("extra", m)
return model
def load_clip_weights(model, sd):
k = list(sd.keys())
for x in k:
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
sd[y] = sd.pop(x)
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
if ids.dtype == torch.float32:
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
sd = ldm_patched.modules.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
return load_model_weights(model, sd)
def load_lora_for_models(model, clip, lora, strength_model, strength_clip, filename='default'):
model_flag = type(model.model).__name__ if model is not None else 'default'
unet_keys = ldm_patched.modules.lora.model_lora_keys_unet(model.model) if model is not None else {}
clip_keys = ldm_patched.modules.lora.model_lora_keys_clip(clip.cond_stage_model) if clip is not None else {}
lora_unmatch = lora
lora_unet, lora_unmatch = ldm_patched.modules.lora.load_lora(lora_unmatch, unet_keys)
lora_clip, lora_unmatch = ldm_patched.modules.lora.load_lora(lora_unmatch, clip_keys)
if len(lora_unmatch) > 12:
print(f'[LORA] LoRA version mismatch for {model_flag}: {filename}')
return model, clip
if len(lora_unmatch) > 0:
print(f'[LORA] Loading {filename} for {model_flag} with unmatched keys {list(lora_unmatch.keys())}')
new_model = model.clone() if model is not None else None
new_clip = clip.clone() if clip is not None else None
if new_model is not None and len(lora_unet) > 0:
loaded_keys = new_model.add_patches(lora_unet, strength_model)
skipped_keys = [item for item in lora_unet if item not in loaded_keys]
if len(skipped_keys) > 12:
print(f'[LORA] Mismatch {filename} for {model_flag}-UNet with {len(skipped_keys)} keys mismatched in {len(loaded_keys)} keys')
else:
print(f'[LORA] Loaded {filename} for {model_flag}-UNet with {len(loaded_keys)} keys at weight {strength_model} (skipped {len(skipped_keys)} keys)')
model = new_model
if new_clip is not None and len(lora_clip) > 0:
loaded_keys = new_clip.add_patches(lora_clip, strength_clip)
skipped_keys = [item for item in lora_clip if item not in loaded_keys]
if len(skipped_keys) > 12:
print(f'[LORA] Mismatch {filename} for {model_flag}-CLIP with {len(skipped_keys)} keys mismatched in {len(loaded_keys)} keys')
else:
print(f'[LORA] Loaded {filename} for {model_flag}-CLIP with {len(loaded_keys)} keys at weight {strength_clip} (skipped {len(skipped_keys)} keys)')
clip = new_clip
return model, clip
class CLIP:
def __init__(self, target=None, embedding_directory=None, no_init=False):
if no_init:
return
params = target.params.copy()
clip = target.clip
tokenizer = target.tokenizer
load_device = model_management.text_encoder_device()
offload_device = model_management.text_encoder_offload_device()
params['device'] = offload_device
params['dtype'] = model_management.text_encoder_dtype(load_device)
self.cond_stage_model = clip(**(params))
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
self.layer_idx = None
def clone(self):
n = CLIP(no_init=True)
n.patcher = self.patcher.clone()
n.cond_stage_model = self.cond_stage_model
n.tokenizer = self.tokenizer
n.layer_idx = self.layer_idx
return n
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)
def clip_layer(self, layer_idx):
self.layer_idx = layer_idx
def tokenize(self, text, return_word_ids=False):
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
def encode_from_tokens(self, tokens, return_pooled=False):
if self.layer_idx is not None:
self.cond_stage_model.clip_layer(self.layer_idx)
else:
self.cond_stage_model.reset_clip_layer()
self.load_model()
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
if return_pooled:
return cond, pooled
return cond
def encode(self, text):
tokens = self.tokenize(text)
return self.encode_from_tokens(tokens)
def load_sd(self, sd):
return self.cond_stage_model.load_sd(sd)
def get_sd(self):
return self.cond_stage_model.state_dict()
def load_model(self):
model_management.load_model_gpu(self.patcher)
return self.patcher
def get_key_patches(self):
return self.patcher.get_key_patches()
class VAE:
def __init__(self, sd=None, device=None, config=None, dtype=None, no_init=False):
if no_init:
return
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd)
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
self.downscale_ratio = 8
self.latent_channels = 4
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
decoder_config = encoder_config.copy()
decoder_config["video_kernel_size"] = [3, 1, 1]
decoder_config["alpha"] = 0.0
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "ldm_patched.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "ldm_patched.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
decoder_config={'target': "ldm_patched.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
elif "taesd_decoder.1.weight" in sd:
self.first_stage_model = ldm_patched.taesd.taesd.TAESD()
else:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
if 'encoder.down.2.downsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
ddconfig['ch_mult'] = [1, 2, 4]
self.downscale_ratio = 4
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
else:
self.first_stage_model = AutoencoderKL(**(config['params']))
self.first_stage_model = self.first_stage_model.eval()
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
if len(m) > 0:
print("Missing VAE keys", m)
if len(u) > 0:
print("Leftover VAE keys", u)
if device is None:
device = model_management.vae_device()
self.device = device
offload_device = model_management.vae_offload_device()
if dtype is None:
dtype = model_management.vae_dtype()
self.vae_dtype = dtype
self.first_stage_model.to(self.vae_dtype)
self.output_device = model_management.intermediate_device()
self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
def clone(self):
n = VAE(no_init=True)
n.patcher = self.patcher.clone()
n.memory_used_encode = self.memory_used_encode
n.memory_used_decode = self.memory_used_decode
n.downscale_ratio = self.downscale_ratio
n.latent_channels = self.latent_channels
n.first_stage_model = self.first_stage_model
n.device = self.device
n.vae_dtype = self.vae_dtype
n.output_device = self.output_device
return n
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
steps = samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = ldm_patched.modules.utils.ProgressBar(steps, title='VAE tiled decode')
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
output = torch.clamp((
(ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
ldm_patched.modules.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar))
/ 3.0) / 2.0, min=0.0, max=1.0)
return output
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
steps = pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = ldm_patched.modules.utils.ProgressBar(steps, title='VAE tiled encode')
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
samples = ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += ldm_patched.modules.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples /= 3.0
return samples
def decode_inner(self, samples_in):
if model_management.VAE_ALWAYS_TILED:
return self.decode_tiled(samples_in).to(self.output_device)
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device)
for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
except model_management.OOM_EXCEPTION as e:
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
pixel_samples = self.decode_tiled_(samples_in)
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
return pixel_samples
def decode(self, samples_in):
wrapper = self.patcher.model_options.get('model_vae_decode_wrapper', None)
if wrapper is None:
return self.decode_inner(samples_in)
else:
return wrapper(self.decode_inner, samples_in)
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
model_management.load_model_gpu(self.patcher)
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
return output.movedim(1,-1)
def encode_inner(self, pixel_samples):
if model_management.VAE_ALWAYS_TILED:
return self.encode_tiled(pixel_samples)
pixel_samples = pixel_samples.movedim(-1,1)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device)
for x in range(0, pixel_samples.shape[0], batch_number):
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
except model_management.OOM_EXCEPTION as e:
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
samples = self.encode_tiled_(pixel_samples)
return samples
def encode(self, pixel_samples):
wrapper = self.patcher.model_options.get('model_vae_encode_wrapper', None)
if wrapper is None:
return self.encode_inner(pixel_samples)
else:
return wrapper(self.encode_inner, pixel_samples)
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
model_management.load_model_gpu(self.patcher)
pixel_samples = pixel_samples.movedim(-1,1)
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
return samples
def get_sd(self):
return self.first_stage_model.state_dict()
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
def get_cond(self, input):
return self.model(input.last_hidden_state)
def load_style_model(ckpt_path):
model_data = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True)
keys = model_data.keys()
if "style_embedding" in keys:
model = ldm_patched.t2ia.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
else:
raise Exception("invalid style model {}".format(ckpt_path))
model.load_state_dict(model_data)
return StyleModel(model)
def load_clip(ckpt_paths, embedding_directory=None):
clip_data = []
for p in ckpt_paths:
clip_data.append(ldm_patched.modules.utils.load_torch_file(p, safe_load=True))
class EmptyClass:
pass
for i in range(len(clip_data)):
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
clip_data[i] = ldm_patched.modules.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
clip_target = EmptyClass()
clip_target.params = {}
if len(clip_data) == 1:
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
clip_target.clip = sd2_clip.SD2ClipModel
clip_target.tokenizer = sd2_clip.SD2Tokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
clip = CLIP(clip_target, embedding_directory=embedding_directory)
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0:
print("clip missing:", m)
if len(u) > 0:
print("clip unexpected:", u)
return clip
def load_gligen(ckpt_path):
data = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True)
model = gligen.load_gligen(data)
if model_management.should_use_fp16():
model = model.half()
return ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
#TODO: this function is a mess and should be removed eventually
if config is None:
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor']
vae_config = model_config_params['first_stage_config']
fp16 = False
if "unet_config" in model_config_params:
if "params" in model_config_params["unet_config"]:
unet_config = model_config_params["unet_config"]["params"]
if "use_fp16" in unet_config:
fp16 = unet_config.pop("use_fp16")
if fp16:
unet_config["dtype"] = torch.float16
noise_aug_config = None
if "noise_aug_config" in model_config_params:
noise_aug_config = model_config_params["noise_aug_config"]
model_type = model_base.ModelType.EPS
if "parameterization" in model_config_params:
if model_config_params["parameterization"] == "v":
model_type = model_base.ModelType.V_PREDICTION
clip = None
vae = None
class WeightsLoader(torch.nn.Module):
pass
if state_dict is None:
state_dict = ldm_patched.modules.utils.load_torch_file(ckpt_path)
class EmptyClass:
pass
model_config = ldm_patched.modules.supported_models_base.BASE({})
from . import latent_formats
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
model_config.unet_config = model_detection.convert_config(unet_config)
if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
else:
model = model_base.BaseModel(model_config, model_type=model_type)
if config['model']["target"].endswith("LatentInpaintDiffusion"):
model.set_inpaint()
if fp16:
model = model.half()
offload_device = model_management.unet_offload_device()
model = model.to(offload_device)
model.load_model_weights(state_dict, "model.diffusion_model.")
if output_vae:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True)
vae = VAE(sd=vae_sd, config=vae_config)
if output_clip:
w = WeightsLoader()
clip_target = EmptyClass()
clip_target.params = clip_config.get("params", {})
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
clip_target.clip = sd2_clip.SD2ClipModel
clip_target.tokenizer = sd2_clip.SD2Tokenizer
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model.clip_h
elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model.clip_l
load_clip_weights(w, state_dict)
return (ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
sd = ldm_patched.modules.utils.load_torch_file(ckpt_path)
sd_keys = sd.keys()
clip = None
clipvision = None
vae = None
model = None
model_patcher = None
clip_target = None
parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
class WeightsLoader(torch.nn.Module):
pass
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
model_config.set_manual_cast(manual_cast_dtype)
if model_config is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
if model_config.clip_vision_prefix is not None:
if output_clipvision:
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
if output_model:
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
offload_device = model_management.unet_offload_device()
model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd)
if output_clip:
w = WeightsLoader()
clip_target = model_config.clip_target()
if clip_target is not None:
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
sd = model_config.process_clip_state_dict(sd)
load_model_weights(w, sd)
left_over = sd.keys()
if len(left_over) > 0:
print("left over keys:", left_over)
if output_model:
model_patcher = ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
if inital_load_device != torch.device("cpu"):
print("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
return (model_patcher, clip, vae, clipvision)
def load_unet_state_dict(sd): #load unet in diffusers format
parameters = ldm_patched.modules.utils.calculate_parameters(sd)
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
if "input_blocks.0.0.weight" in sd: #ldm
model_config = model_detection.model_config_from_unet(sd, "", unet_dtype)
if model_config is None:
return None
new_sd = sd
else: #diffusers
model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype)
if model_config is None:
return None
diffusers_keys = ldm_patched.modules.utils.unet_to_diffusers(model_config.unet_config)
new_sd = {}
for k in diffusers_keys:
if k in sd:
new_sd[diffusers_keys[k]] = sd.pop(k)
else:
print(diffusers_keys[k], k)
offload_device = model_management.unet_offload_device()
model_config.set_manual_cast(manual_cast_dtype)
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
print("left over keys in unet:", left_over)
return ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
def load_unet(unet_path):
sd = ldm_patched.modules.utils.load_torch_file(unet_path)
model = load_unet_state_dict(sd)
if model is None:
print("ERROR UNSUPPORTED UNET", unet_path)
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
return model
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None):
clip_sd = None
load_models = [model]
if clip is not None:
load_models.append(clip.load_model())
clip_sd = clip.get_sd()
model_management.load_models_gpu(load_models)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd)
ldm_patched.modules.utils.save_torch_file(sd, output_path, metadata=metadata)
|