Spaces:
Runtime error
Runtime error
# Taken from https://github.com/comfyanonymous/ComfyUI | |
# This file is only for reference, and not used in the backend or runtime. | |
from ldm_patched.modules import sd1_clip | |
import torch | |
import os | |
class SDXLClipG(sd1_clip.SDClipModel): | |
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None): | |
if layer == "penultimate": | |
layer="hidden" | |
layer_idx=-2 | |
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") | |
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, | |
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False) | |
def load_sd(self, sd): | |
return super().load_sd(sd) | |
class SDXLClipGTokenizer(sd1_clip.SDTokenizer): | |
def __init__(self, tokenizer_path=None, embedding_directory=None): | |
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') | |
class SDXLTokenizer: | |
def __init__(self, embedding_directory=None): | |
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) | |
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) | |
def tokenize_with_weights(self, text:str, return_word_ids=False): | |
out = {} | |
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) | |
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) | |
return out | |
def untokenize(self, token_weight_pair): | |
return self.clip_g.untokenize(token_weight_pair) | |
class SDXLClipModel(torch.nn.Module): | |
def __init__(self, device="cpu", dtype=None): | |
super().__init__() | |
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False) | |
self.clip_g = SDXLClipG(device=device, dtype=dtype) | |
def clip_layer(self, layer_idx): | |
self.clip_l.clip_layer(layer_idx) | |
self.clip_g.clip_layer(layer_idx) | |
def reset_clip_layer(self): | |
self.clip_g.reset_clip_layer() | |
self.clip_l.reset_clip_layer() | |
def encode_token_weights(self, token_weight_pairs): | |
token_weight_pairs_g = token_weight_pairs["g"] | |
token_weight_pairs_l = token_weight_pairs["l"] | |
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) | |
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) | |
return torch.cat([l_out, g_out], dim=-1), g_pooled | |
def load_sd(self, sd): | |
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: | |
return self.clip_g.load_sd(sd) | |
else: | |
return self.clip_l.load_sd(sd) | |
class SDXLRefinerClipModel(sd1_clip.SD1ClipModel): | |
def __init__(self, device="cpu", dtype=None): | |
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG) | |